Skip to main content

The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types

Abstract

Several studies have demonstrated that the temperature tolerance of scleractinian reef-building corals is controlled, in part, by hosting physiologically distinct symbiotic algae. We investigated the thermal tolerance of coral–algal associations within seven common species of reef-building corals hosting distinct Symbiodinium sub-clades collected from Heron Island during experimentally induced bleaching conditions. During experimental heating, photosynthetic fitness was assessed by the dark-adapted yield of PSII (F v/F m), and excitation pressure across PSII (Q m) of each coral–algal association using pulse amplitude modulation fluorometry. The onset of bleaching was determined by the measurement of Symbiodinium cell density. Using the ribosomal internal transcribed spacer 2 (ITS-2) region, we showed that Symbiodinium type–coral host associations were temporally and spatially conserved in a high proportion of the colonies sampled within each species. Generally, the species Acropora millepora, Platygyra daedalea, Acropora aspera and Acropora formosa contained Symbiodinium ITS-2 type C3, whereas the species Montipora digitata, Porites cylindrica and Porites lutea contained Symbiodinium type C15. Bleaching susceptibility showed some association with Symbiodinium type, but further research is required to confirm this. Corals hosting C3 Symbiodinium displayed higher reductions in F v/F m during heating compared to their C15 counterparts, irrespective of host species. However, a corresponding reduction in Symbiodinium density was not observed. Nonetheless, A. aspera and A. formosa showed significant reductions in Symbiodinium density relative to controls. This correlated with large increases in Q m and decreases in F v/F m in heated explants. Our results suggest a range of bleaching susceptibilities for the coral species investigated, with A. aspera and A. formosa showing the greatest susceptibility to bleaching and M. digitata showing the lowest bleaching susceptibility. The data provide strong evidence for distinct differences in temperature tolerance between C3 and C15 Symbiodinium types when in-hospite; however, future studies addressing the confounding effect of host species would help to confirm this.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abrego D, Ulstrup KE, Willis BL, van Oppen MJH (2008) Species-specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress. Proc R Soc, B 275:2273–2282

    Article  CAS  Google Scholar 

  2. Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Coral reefs: corals’ adaptive response to climate change. Nature 430:741–742

    PubMed  Article  CAS  Google Scholar 

  3. Barbrook AC, Visram S, Douglas AE TR, Howe CJ (2006) Molecular diversity of dinoflagellate symbionts of Cnidaria: The psbA minicircle of Symbiodinium. Protist 157:159–171

    PubMed  Article  CAS  Google Scholar 

  4. Berkelmans R, van Oppen MJH (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘Nugget of Hope’ for coral reefs in an era of climate change. Proc R Soc Lond, B 273:2305–2312

    Article  Google Scholar 

  5. Brown BE, Ogden JC (1993) Coral bleaching. Sci Am 268:64–70

    Article  Google Scholar 

  6. Buddemeier RW, Fautin DG (1993) Coral bleaching as an adaptive mechanism. Bioscience 43:320–326

    Article  Google Scholar 

  7. Cantin NE, van Oppen MJH, Willis BL, Mieog JC, Negri AP (2009) Juvenile corals can acquire more carbon from high-performance algal symbionts. Coral Reefs 28:405–414

    Article  Google Scholar 

  8. Coleman AW, Suarez A, Goff LJ (1994) Molecular delineation of species and syngens in Volvocacean green algae (Chlorophyta). J Phycol 30:80–90

    Article  CAS  Google Scholar 

  9. DeSalvo MK, Sunagawa S, Fisher PL, Voolstra CR, Iglesias-Prieto R, Medina M (2010) Coral host transcriptomic states are correlated with Symbiodinium genotypes. Mol Ecol 19:1174–1186

    PubMed  Article  CAS  Google Scholar 

  10. Dove S (2004) Scleractinian corals with photoprotective host pigments are hypersensitive to thermal bleaching. Mar Ecol Prog Ser 272:99–116

    Article  Google Scholar 

  11. Dove S, Ortiz J-C, Enriquez S, Fine M, Fisher P, Iglesias-Prieto R, Thornhill D, Hoegh-Guldberg O (2006) Response of holosymbiont pigments from the scleractinian coral Montipora monasteriata to short-term heat stress. Limnol Oceanogr 51:1149–1158

    Article  Google Scholar 

  12. Edmunds PJ (1994) Evidences that reef-wide patterns of coral bleaching may be the result of the distribution of bleaching-susceptible clones. Mar Biol 121:137–142

    Article  Google Scholar 

  13. Enriquez S, Mendez ER, Iglesias-Prieto R (2005) Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol Oceanogr 50:1025–1032

    Article  Google Scholar 

  14. Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (Zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    PubMed  Article  CAS  Google Scholar 

  15. Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  16. Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  17. Fine M, Meroz-Fine E, Hoegh-Guldberg O (2005) Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J Exp Biol 208:75–81

    PubMed  Article  Google Scholar 

  18. Fitt WK, Warner ME (1995) Bleaching patterns of four species of Caribbean reef corals. Biol Bull 189:298–307

    Article  Google Scholar 

  19. Fitt WK, Gates RD, Hoegh-Guldberg O, Bythell JC, Jatkar A, Grottoli AG, Gomez M, Fisher PL, LaJeunesse TC, Pantos O, Iglesias-Prieto R, Franklin DJ, Rodrigues LJ, Torregiani JM, van Woesik R, Lesser MP (2009) Response of two species of Indo-Pacific corals, Porites cylindrica and Stylophora pistillata, to short-term thermal stress: the host does matter in determining the tolerance of corals to bleaching. J Exp Mar Biol Ecol 373:102–110

    Article  Google Scholar 

  20. Gorbunov MY, Kolber Z, Lesser MP, Falkowski PG (2001) Photosynthesis and photoprotection in symbiotic corals. Limnol Oceanogr 46:75–85

    Article  CAS  Google Scholar 

  21. Goreau TJ, Macfarlane AH (1990) Reduced growth rate of Montastrea annularis following the 1987–1988 coral-bleaching event. Coral Reefs 8:211–215

    Article  Google Scholar 

  22. Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, Hofmann EE, Lipp EK, Osterhaus ADME, Overstreet RM, Porter JW, Smith GW, VG R (2000) Emerging marine disease - Climate links and anthropogenic factors. Science 285:1505–1510

    Article  Google Scholar 

  23. Harvell CD, Kim K, Quirolo C, Weir J, Smith G (2001) Coral bleaching and disease: contributors to 1998 mass mortality in Briareum asbestinum (Octocorallia, Gorgonacea). Hydrobiologia 460:97–104

    Article  Google Scholar 

  24. Hennige S, Suggett D, Warner M, McDougall K, Smith D (2009) Photobiology of Symbiodinium revisited: bio-physical and bio-optical signatures. Coral Reefs 28:179–195

    Article  Google Scholar 

  25. Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  26. Hoegh-Guldberg O, Jones RJ (1999) Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar Ecol Prog Ser 183:73–86

    Article  Google Scholar 

  27. Hoegh-Guldberg O, Smith GJ (1989) The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J Exp Mar Biol Ecol 1989:279–303

    Article  Google Scholar 

  28. Iglesias-Prieto R (1997) Temperature-dependant inactivation of photosystem II in symbiotic dinoflagellates. In: Proceedings of 8th international coral reef symposium, vol, 2, pp 1313–1318

  29. Iglesias-Prieto R, Matta JL, Robins WA, Trench RK (1992) Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadraticum in culture. Proc Natl Acad Sci USA 89:10302–10305

    PubMed  Article  CAS  Google Scholar 

  30. Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the Eastern Pacific. Proc R Soc Lond, B 271:1757–1763

    Article  CAS  Google Scholar 

  31. Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in Zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  32. Jones RJ, Ward S, Amri AY, Hoegh-Guldberg O (2000) Changes in quantum efficiency of photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event. Mar Freshw Res 51:63–71

    Article  Google Scholar 

  33. Jones AM, Berkelmans R, van Oppen MJH, Mieog JC, Sinclair W (2008) A community change in the algal endosymbionts of a scleractinian coral following a natural bleaching event: field evidence of acclimatization. Proc R Soc, B 275:1359–1365

    Article  CAS  Google Scholar 

  34. Kaniewska P, Anthony K, Hoegh-Guldberg O (2008) Variation in colony geometry modulates internal light levels in branching corals, Acropora humilis and Stylophora pistillata. Mar Biol 155:649–660

    Article  Google Scholar 

  35. Kuguru B, Winters G, Beer S, Santos S, Chadwick N (2007) Adaptation strategies of the corallimorpharian Rhodactis rhodostoma to irradiance and temperature. Mar Biol 151:1287–1298

    Article  Google Scholar 

  36. LaJeunesse TC (2001) Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “Species” level marker. J Phycol 37:866–880

    Article  CAS  Google Scholar 

  37. LaJeunesse TC (2002) Diversity and community structure of symbiotic dinoflagellates from Caribbean coral reefs. Mar Biol 141:387–400

    Article  Google Scholar 

  38. LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    PubMed  Article  CAS  Google Scholar 

  39. LaJeunesse TC, Loh WK, Van Woesik R, Hoegh-Guldberg O, Schmidt GW, Fitt WK (2003) Low symbiont diversity in Southern Great Barrier Reef corals relative to those of the caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  40. LaJeunesse TC, Smith R, Walther M, Pinzón J, Pettay DT, McGinley M, Aschaffenburg M, Medina-Rosas P, Cupul-Magaña AL, Pérez AL, Reyes-Bonilla H, Warner ME (2010) Host–symbiont recombination versus natural selection in the response of coral–dinoflagellate symbioses to environmental disturbance. Proc R Soc, B 277:2925–2934

    Article  Google Scholar 

  41. Leggat W, Marendy EM, Baillie BK, Whitney SM, Ludwig M, Badger MR, Yellowlees D (2002) Dinoflagellate symbioses: strategies and adaptations for the acquisition and fixation of inorganic carbon. Funct Plant Biol 29:309–322

    Article  CAS  Google Scholar 

  42. Lesser MP, Farrell JH (2004) Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs 23:367–377

    Article  Google Scholar 

  43. Lesser MP, Shick JM (1989) Effects of irradiance and ultraviolet radiation on photo adaptation in the Zooxathellae of Aiptasia pallida: primary production, photoinhibition, enzymatic defences against oxygen toxicity. Mar Biol 102:243–255

    Article  Google Scholar 

  44. Little AF, van Oppen MJH, Willis BL (2004) Flexibility in algal endosymbioses shapes growth in reef corals. Science 304:1492–1494

    PubMed  Article  CAS  Google Scholar 

  45. Loh WK, Loi T, Carter D, Hoegh-Guldberg O (2001) Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222:97–107

    Article  Google Scholar 

  46. Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, Van Woesik R (2001) Coral bleaching: the winners and losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  47. Manning MM, Gates RD (2008) Diversity in populations of free-living Symbiodinium from a Caribbean and Pacific reef. Limnol Oceanogr 53:1853–1861

    Article  Google Scholar 

  48. Marshall PA, Baird AH (2000) Bleaching of corals on the Great Barrier Reef: differential susceptibilities among taxa. Coral Reefs 19:155–163

    Article  Google Scholar 

  49. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence–A practical guide. J Exp Bot 51:659–668

    PubMed  Article  CAS  Google Scholar 

  50. McClanahan TR (2004) The relationship between bleaching and mortality of common corals. Mar Biol 144:1239–1245

    Article  Google Scholar 

  51. Middlebrook R, Anthony KRN, Hoegh-Guldberg O, Dove S (2010) Heating rate and symbiont productivity are key factors determining thermal stress in the reef-building coral Acropora formosa. J Exp Biol 213:1026–1034

    PubMed  Article  CAS  Google Scholar 

  52. Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27:454–460

    Article  Google Scholar 

  53. Oliver T, Palumbi S (2011) Do fluctuating temperature environments elevate coral thermal tolerance? Coral Reefs 30:429–440

    Article  Google Scholar 

  54. Pettay DT, LaJeunesse TC (2007) Microsatellites from clade B Symbiodinium spp. specialized for Caribbean corals in the genus Madracis. Mol Ecol Notes 7:1271–1274

    Article  CAS  Google Scholar 

  55. Pettay DT, LaJeunesse TC (2009) Microsatellite loci for assessing genetic diversity, dispersal and clonality of coral symbionts in ‘stress-tolerant’ clade D Symbiodinium. Mol Ecol Resources 9:1022–1025

    Article  CAS  Google Scholar 

  56. Pochon X, Gates RD (2010) A new Symbiodinium clade (Dinophyceae) from soritid foraminifera in Hawai’i. Mol Phylogenet Evol 56:492–497

    PubMed  Article  CAS  Google Scholar 

  57. Pochon X, Pawlowski J, Zaninetti L, Rowan R (2001) High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139:1069–1078

    Article  Google Scholar 

  58. Pochon X, LaJeunesse TC, Pawlowski J (2004) Biogeographic partitioning and host specialization among foraminiferan dinoflagellate symbionts (Symbiodinium; Dinophyta). Mar Biol 146:17–27

    Article  Google Scholar 

  59. Pochon X, Stat M, Takabayashi M, Chasqui L, Chauka LJ, Logan DDK, Gates RD (2010) Comparison od endosymbiotic and free-living Symbiodinium (Dinophyceae) diversity in a Hawaiian reef environment. J Phycol 46:53–65

    Article  CAS  Google Scholar 

  60. Robison JD, Warner ME (2006) Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol 42:568–579

    Article  CAS  Google Scholar 

  61. Rodriguez-Roman A, Iglesias-Prieto R (2005) Regulation of photochemical activity in cultured symbiotic dinoflagellates under nitrate limitation and deprivation. Mar Biol 146:1063–1073

    Article  CAS  Google Scholar 

  62. Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    PubMed  Article  CAS  Google Scholar 

  63. Rowan R, Powers DA (1991) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    PubMed  Article  CAS  Google Scholar 

  64. Sampayo EM, Franceschinis L, Hoegh-Guldberg O, Dove S (2007) Niche partitioning of closely related symbiotic dinoflagellates. Mol Ecol 16:3721–3733

    PubMed  Article  CAS  Google Scholar 

  65. Sampayo EM, Ridgway T, Bongaerts P, Hoegh-Guldberg O (2008) Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. Proc Natl Acad Sci USA 105:10444–10449

    PubMed  Article  CAS  Google Scholar 

  66. Stat M, Pochon X, Cowie ROM P, Gates RD (2009) Specificity in communities of Symbiodinium in corals from Johnston Atoll. Mar Ecol Prog Ser 386:83–96

    Google Scholar 

  67. Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of Zooxanthellae from reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  68. Takahashi S, Nakamura T, Sakamizu M, van Woesik R, Yamasak H (2004) Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol 45:251–255

    PubMed  Article  CAS  Google Scholar 

  69. Tchernov D, Gorbunov MY, de Vargas C, Narayan Yadav S, Milligan AJ, Haggblom M, Falkowski PG (2004) Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    PubMed  Article  CAS  Google Scholar 

  70. Thornhill D, LaJeunesse T, Kemp D, Fitt W, Schmidt G (2006) Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar Biol 148:711–722

    Article  Google Scholar 

  71. Thornhill DJ, Kemp DW, Bruns BU, Fitt WK, Schmidt GW (2008) Correspondence between cold tolerance and temperate biogeography in a western atlantic Symbiodinium (Dinophyta) lineage. J Phycol 44:1126–1135

    Article  CAS  Google Scholar 

  72. van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    PubMed  Article  Google Scholar 

  73. Venn AA, Loram JE, Douglas AE (2008) Photosynthetic symbioses in animals. J Exp Bot 59:1069–1080

    PubMed  Article  CAS  Google Scholar 

  74. Ward S, Hoegh-Guldberg O, Harrison P (2000) Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. In: Proceedings of 9th international coral reef symposium, vol 2, pp 1123–1128

  75. Ware JR, Fautin DG, Buddemeier RW (1996) Patterns of coral bleaching: modeling the adaptive bleaching hypothesis. Ecol Model 84:199–214

    Article  Google Scholar 

  76. Warner ME, Berry-Lowe S (2006) Differential xanthophyll cycling and photochemical activity in symbiotic dinoflagellates in multiple locations of three species of Caribbean coral. J Exp Mar Biol Ecol 339:86–95

    Article  CAS  Google Scholar 

  77. Warner ME, Fitt WK, Schmidt GW (1999) Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci USA 96:8007–8012

    PubMed  Article  CAS  Google Scholar 

  78. Warner ME, Lesser MP, Ralph PJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Prasil O, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Berlin

    Google Scholar 

Download references

Acknowledgments

Funding was provided by the Australian Research Council grant (A00106021) held by Dr Sophie Dove. The authors would like to thank Dr Alistair Grinham and Dr Mark Davey for their contributions during fieldwork. We are also grateful to Dr Simon Davy and Jacqui Barber for their comments on the manuscript. The authors would also like to thank the anonymous referees and Dr Mark Warner for the comments they provided on this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. L. Fisher.

Additional information

Communicated by Biology Editor Dr. Mark Warner

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fisher, P.L., Malme, M.K. & Dove, S. The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31, 473–485 (2012). https://doi.org/10.1007/s00338-011-0853-0

Download citation

Keywords

  • Symbiodinium
  • Coral bleaching
  • Thermal stress
  • Photosynthesis
  • Light pressure