Skip to main content
Log in

Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

We examined the importance of picoplankton and virioplankton to reef trophodynamics at Ningaloo Reef, (north-western Australia), in May and November 2008. Picophytoplankton (Prochlorococcus, Synechococcus and picoeukaryotes), bacterioplankton (inclusive of bacteria and Archaea), virioplankton and chlorophyll a (Chl a) were measured at five stations following the consistent wave-driven unidirectional mean flow path of seawater across the reef and into the lagoon. Prochlorococcus, Synechococcus, picoeukaryotes and bacterioplankton were depleted to similar levels (~40% on average) over the fore reef, reef crest and reef flat (=‘active reef’), with negligible uptake occurring over the sandy bottom lagoon. Depletion of virioplankton also occurred but to more variable levels. Highest uptake rates, m, of picoplankton occurred over the reef crest, while uptake coefficients, S (independent of cell concentration), were similarly scaled over the reef zones, indicating no preferential uptake of any one group. Collectively, picophytoplankton, bacterioplankton and virioplankton accounted for the uptake of 29 mmol C m−2 day−1, with Synechococcus contributing the highest proportion of the removed C. Picoplankton and virioplankton accounted for 1–5 mmol N m−2 day−1 of the removed N, with bacterioplankton estimated to be a highly rich source of N. Results indicate the importance of ocean–reef interactions and the dependence of certain reef organisms on picoplanktonic supply for reef-level biogeochemistry processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Agostini S, Suzuki Y, Casareto BE, Nakano Y, Hidaka M, Badrun N (2009) Coral symbiotic complex: Hypothesis through vitamin B12 for a new evaluation. Galaxea 11:1–11

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK

    Google Scholar 

  • Ayukai T (1995) Retention of phytoplankton and planktonic microbes on coral reefs within the Great Barrier Reef, Australia. Coral Reefs 14:141–147

    Article  Google Scholar 

  • Bertilsson S, Berglund O, Karl D, Chisholm SW (2003) Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnol Oceanogr 48:1721–1731

    Article  CAS  Google Scholar 

  • Brussaard CPD (2004) Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol 70:1506–1513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caron DA, Dam HG, Lessard EJ, Madin LP, Malone TC, Napp JM, Peele ER, Roman MR, Youngbluth MJ (1995) The contribution of microorganisms to particulate carbon and nitrogen in surface waters of the Sargasso Sea near Bermuda. Deep-Sea Res 42:943–972

    Article  CAS  Google Scholar 

  • Charpy L, Blanchot J (1999) Picophytoplankton biomass, community structure and productivity in the Great Astrolabe Lagoon, Fiji. Coral Reefs 18:255–262

    Article  Google Scholar 

  • Crosbie ND, Furnas M (2001a) Net growth rates of picocyanobacteria and nano-/microphytoplankton inhabiting shelf waters of the central (17°S) and southern (20°S) Great Barrier Reef. Aquat Microb Ecol 24:209–224

    Article  Google Scholar 

  • Crosbie ND, Furnas MJ (2001b) Abundance, distribution and flow-cytometric characterization of picophytoprokaryote populations in central (17°S) and southern (20°S) shelf waters of the Great Barrier Reef. J Plankton Res 23:809–828

    Article  Google Scholar 

  • Dinsdale EA, Pantos O, Smigra S, Edwards R, Angly F, Wegley L, Hatay M, Hall D, Brown E, Haynes M, Krause L, Sala E, Sandin SA, Vega Thurber R, Willis BL, Azam F, Knowlton N, Rohwer F (2008) Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3(2):e1584. doi:10.1371/journalpone0001584

    Article  PubMed  PubMed Central  Google Scholar 

  • Fabricius KE, Dommisse M (2000) Depletion of suspended particulate matter over coastal reef communities dominated by zooxanthellate soft corals. Mar Ecol Prog Ser 196:157–167

    Article  CAS  Google Scholar 

  • Fagerbakke KM, Heldal M, Norland S (1996) Content of carbon, nitrogen, oxygen, sulfur and phosphorous in native and cultured bacteria. Aquat Microb Ecol 10:15–27

    Article  Google Scholar 

  • Falter JL, Atkinson MJ, Schar DW, Lowe RJ, Monismith SG (2011) Short-term coherency between gross primary production and community respiration in an algal-dominated reef flat. Coral Reefs 30:53–58

    Article  Google Scholar 

  • Feng M, Wild-Allen K (2009) The Leeuwin Current. In: Liu KK, Atkinson L (eds) Carbon and nutrient fluxes in continental margins: a global synthesis. Springer, New York

    Google Scholar 

  • Feng M, Meyers G, Pearce A, Wijffels S (2003) Annual and interannual variations of the Leeuwin Current at 32°S. J Geophys Res Oceans 108:3355. doi:10.1029/2002JC001763

    Article  Google Scholar 

  • Ferrier D (1991) Net uptake of dissolved free amino acids by four scleractinian corals. Coral Reefs 10:183–187

    Article  Google Scholar 

  • Ferrier-Pagés C, Furla P (2001) Pico- and nanoplankton biomass and production in the two largest atoll lagoons of French Polynesia. Mar Ecol Prog Ser 211:63–76

    Article  Google Scholar 

  • Ferrier-Pagés C, Gattuso JP (1998) Biomass, production and grazing rates of pico- and nanoplankton in coral reef waters (Miyako Island, Japan). Microb Ecol 35:46–57

    Article  PubMed  Google Scholar 

  • Ferrier-Pagés C, Allemand D, Gattuso JP, Jaubert J, Rassoulzadegan F (1998) Microheterotrophy in the zooxanthellate coral Stylophora pistillata: effects of light and ciliate density. Limnol Oceanogr 43:1639–1648

    Article  Google Scholar 

  • Fu F-X, Warner ME, Zhang Y, Feng Y, Hutchins DA (2007) Effects of increased temperature and CO2 on photosynthesis, growth and elemental ratios of marine Synechococcus and Prochlorococcus (cyanobacteria). J Phycol 43:485–496

    Article  Google Scholar 

  • Fukuda R, Ogawa H, Nagata T, Koike I (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments. Appl Environ Microbiol 64:3352–3358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Genin A, Monismith SG, Reidenbach MA, Yahel G, Koseff JR (2009) Intense benthic grazing of phytoplankton in a coral reef. Limnol Oceanogr 54:938–951

    Article  Google Scholar 

  • Ginsburg RN (1983) Geological and biological roles of cavities in coral reefs. In: Barnes DJ (ed) Perspectives on coral reefs. Australian Institute of Marine Science, pp 148–153

  • Glynn PW (1973) Ecology of a Caribbean coral reef: Porites reef-flat biotop. 2. Plankton community with evidence for depletion. Mar Biol 22:1–21

    Article  Google Scholar 

  • Gobler CJ, Hutchins DA, Fisher NS, Cosper EM, Wilhemy-Sanudo SA (1997) Release and bioavailability of C, N, P, Se and Fe following viral release of a marine chrysophyte. Limnol Oceanogr 42:1492–1504

    Article  CAS  Google Scholar 

  • Goldberg WM (2002) Gastrodermal structure and feeding responses in the scleractinian Mycetophyllia reesi, a coral with novel digestive filaments. Tissue Cell 34:246–261

    Article  PubMed  Google Scholar 

  • Grossart H-P, Allgaier M, Passow U, Riebesell U (2006) Testing the effect of CO2 concentration on the dynamics of marine heterotrophic bacterioplankton. Limnol Oceanogr 51:1–11

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodriguez LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2003) Nitrate uptake in the Scleractinian coral Stylophora pistillata. Limnol Oceanogr 48:2266–2274

    Article  CAS  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2006) Urea uptake by the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 332:216–225

    Article  CAS  Google Scholar 

  • Gundersen K, Heldal M, Norland S, Purdie DA, Knap AH (2002) Elemental C, N and P cell content of individual bacteria collected at the Bermuda Atlantic time-series study (BATS) site. Limnol Oceanogr 47:1525–1530

    Article  CAS  Google Scholar 

  • Hadas E, Marie D, Shpigel M, Ilan M (2006) Virus predation by sponges is a new nutrient-flow pathway in coral reef food webs. Limnol Oceanogr 51:1548–1550

    Article  Google Scholar 

  • Hanson CA, Pattiaratchi C, Waite AM (2005) Sporadic upwelling on a downwelling coast: Phytoplankton responses to spatially variable nutrient dynamics off the Gascoyne region of Western Australia. Cont Shelf Res 25:1561–1582

    Article  Google Scholar 

  • Heldal M, Scanlan DJ, Norland S, Thingstad F, Mann NH (2003) Elemental composition of single cells of various strains of marine Prochlorococcus and Synechococcus using x-ray microanalysis. Limnol Oceanogr 48:1723–1743

    Article  Google Scholar 

  • Hewson I, Vargo GA, Fuhrman JA (2003) Bacterial diversity in shallow oligotrophic marine benthos and overlying waters: Effects of virus infection, containment, and nutrient enrichment. Microb Ecol 46:322–336

    Article  CAS  PubMed  Google Scholar 

  • Houlbrèque F, Tambuttè E, Ferrier-Pagés C (2003) Effects of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166

    Article  Google Scholar 

  • Houlbrèque F, Tambuttè E, Richard C, Ferrier-Pagés C (2004a) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Houlbrèque F, Tambuttè E, Allemand D, Ferrier-Pagés C (2004b) Interactions between zooplankton feeding, photosynthesis and skeletal growth in the Scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  PubMed  Google Scholar 

  • Houlbrèque F, Delesalle B, Blanchot J, Montel Y, Ferrier-Pagès C (2006) Picoplankton removal by the coral reef community of La Prévoyante, Mayotte Island. Aquat Microb Ecol 44:59–70

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: The physical science basis. In: Solomon S, Qin D, Manning M, Chen Z, Marquis MC, Averyt K, Tignor M, Miller HL (eds) Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Intergovernmental panel on Climate Change. Cambridge University Press, Cambridge, UK and New York, USA

    Google Scholar 

  • Kappner I, Al-Moghrabi SM, Richter C (2000) Mucus-net feeding by the vermetid gastropod Dendropoma maxima in coral reefs. Mar Ecol Prog Ser 204:309–313

    Article  Google Scholar 

  • Marie D, Partensky F, Vaulot D, Brussard C (1999) Enumeration of phytoplankton, bacteria, and viruses in marine samples. In: Robinson JPEA (ed) Current protocols in cytometry, suppl 10. John Wiley & Sons, Inc, New York, pp 11.11.11–11.11.15

  • Middelboe M, Jorgensen NOG (2006) Viral lysis of bacteria: an important source of dissolved amino acids and cell wall compounds. J Mar Biol Assoc UK 86:605–612

    Article  CAS  Google Scholar 

  • Miyajima T, Suzumura M, Umezawa Y, Koike I (2001) Microbiological nitrogen transformation in carbonate sediments of a coral-reef lagoon and associated seagrass beds. Mar Ecol Prog Ser 217:273–286

    Article  Google Scholar 

  • Naumann MS, Richard C, el-Zibdah M, Wild C (2009) Coral mucus as an efficient trap for picoplanktonic cyanobacteria: implications for pelagic–benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–76

    Article  Google Scholar 

  • Parsons TR, Maita Y, Lalli CM (1984) A manual for chemical and biological methods for seawater analysis. Pergamon Press, New York

  • Partensky F, Blanchot J, Vaulot D (1999) Differential distribution and ecology of Prochlorococcus and Synechococcus in oceanic waters: a review. In: Charpy L, Larkum AWD (eds) Marine cyanobacteria. Bulletin de l’Institut Océanographique, Monaco, pp 457–475

    Google Scholar 

  • Patten NL, Mitchell JG, Middelboe M, Seuront L, Harrison PL, Glud RN (2008) Bacterial and viral dynamics during a mass coral spawning period on the Great Barrier Reef. Aquat Microb Ecol 50:201–220

    Article  Google Scholar 

  • Pearce AF (1991) Eastern Boundary Currents of the southern hemisphere. J R Soc West Aust 74:35–45

    Google Scholar 

  • Pinnegar JK, Polunin NVC (2006) Planktivorous damselfish support significant nitrogen and phosphorous fluxes to Mediterranean reefs. Mar Biol 148:1089–1099

    Article  Google Scholar 

  • Ribes M, Atkinson MJ (2007) Effects of water velocity on picoplankton uptake by coral reef communities. Coral Reefs 26:413–421

    Article  Google Scholar 

  • Ribes M, Coma R, Atkinson MJ, Kinzie RA III (2003) Particle removal by coral reef communities: picoplankton is a major source of nitrogen. Mar Ecol Prog Ser 257:13–23

    Article  Google Scholar 

  • Richter C, Wunsch M (1999) Cavity-dwelling suspension feeders in coral reefs a new link in reef trophodynamics. Mar Ecol Prog Ser 188:105–116

    Article  CAS  Google Scholar 

  • Richter C, Wunsch M, Rasheed M, Kötter I, Badran MI (2001) Endoscopic exploration of Red Sea coral reefs reveals dense populations of cavity-dwelling sponges. Nature 413:726–730

    Article  CAS  PubMed  Google Scholar 

  • Scheffers SR, Nieuwland G, Bak RPM, van Duyl FC (2004) Removal of bacteria and nutrient dynamics within the coral reef framework of Curacao (Netherlands Antilles). Coral Reefs 23:413–422

    Article  Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Monastrea cavernosa, in a field enclosure. Mar Biol 127:303–318

    Article  Google Scholar 

  • Seymour JR, Patten NL, Bourne DG, Mitchell JG (2005) Spatial dynamics of virus-like particles and heterotrophic bacteria within a shallow coral reef system. Mar Ecol Prog Ser 288:1–8

    Article  Google Scholar 

  • Smith RL, Huyer A, Godfrey JS, Church JA (1991) The Leeuwin Current off Western Australia, 1986–1987. J Phys Oceanogr 21:323–345

    Article  Google Scholar 

  • Sorokin YI (1973) On the feeding of some Scleractinian corals with bacteria and dissolved organic matter. Limnol Oceanogr 18:380–385

    Article  CAS  Google Scholar 

  • Stockner JG (1988) Phototrophic picoplankton: an overview from marine and freshwater ecosystems. Limnol Oceanogr 33:765–775

    CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses major players in the global ecosystem. Nat Rev Microbiol 5:801–811

    Article  CAS  PubMed  Google Scholar 

  • Tortell PD, Maldonado MT, Granger J, Price NM (1999) Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol Ecol 29:1–11

    Article  CAS  Google Scholar 

  • Verity PG, Robertson CY, Tronzo CR, Andrews MG, Nelson JR, Sieracki ME (1992) Relationship between cell volume and the carbon and nitrogen content of marine photosynthetic nanoplankton. Limnol Oceanogr 37:1434–1446

    Article  CAS  Google Scholar 

  • Weinbauer MG (2004) Ecology of prokaryotic viruses. FEMS Microbiol Rev 28:127–181

    Article  CAS  PubMed  Google Scholar 

  • Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Article  Google Scholar 

  • Woo M, Pattiaratchi C, Schroeder W (2006) Summer surface circulation along the Gascoyne continental shelf, Western Australia. Cont Shelf Res 26:132–152

    Article  Google Scholar 

  • Wyatt ASJ, Lowe RJ, Humphries S, Waite AM (2010) Particulate nutrient fluxes over a fringing coral reef: relevant scales of phytoplankton production and mechanisms of supply. Mar Ecol Prog Ser 405:113–130

    Article  CAS  Google Scholar 

  • Yahel G, Post AF, Fabricius K, Marie D, Vaulot D, Genin A (1998) Phytoplankton distribution and grazing near coral reefs. Limnol Oceanogr 43:551–563

    Article  Google Scholar 

Download references

Acknowledgments

We thank D. Krikke, F. McGregor, S. Hinrichs, A. Chalmers and K. Meyers for assistance in the field. Funding was provided by grants from the University of Western Australia (UWA), The Faculty of Engineering, Computing and Mathematical Sciences and the Western Australian Marine Science Institution (Node 3) to A.M.W.; an Australian Research Council (ARC) Discovery Grant #DP0663670 to A.M.W. et al., an ARC Discovery Grant #DP0770094 to R.J.L. and postdoctoral research funding from UWA and The Australian Institute of Marine Science to N.L.P. The authors acknowledge the facilities, scientific and technical assistance of the Australian Microscopy & Microanalysis Research Facility at the Centre for Microscopy, Characterisation and Analysis, UWA, a facility funded by The University, State and Commonwealth Governments. We finally thank two anonymous reviewers who provided valuable comments that improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. L. Patten.

Additional information

Communicated by Ecology Editor Prof. Mark Hay

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM, Table 1

Conversion factors from literature values for estimates of carbon (C) and nitrogen (N) biomass for picophytoplankton, bacterioplankton and virioplankton. (DOC 30 kb)

ESM, Table 2

Changes (given as cell numbers and as a %) in Prochlorococcus (Pro), Synechococcus (Syn), picoeukaryotes (Peuk), bacterioplankton (Bac) and virioplankton (Vir) between adjacent stations on individual sampling days in May and November 2008. Note that positive values indicate depletion (= uptake) of cells between adjacent stations. nd = not determined because samples from one or both stations were missing. (DOC 43 kb)

ESM, Fig. 1

Uptake rates m (× 109 cell m−2 d−1) versus cell concentrations (× 103 cells ml−1) over the reef crest and reef flat for (a) Prochlorococcus, (b) Synechococcus, (c) picoeukaryotes, (d) bacterioplankton and (e) virioplankton. Black closed circles denote values in May and open circles denote values in November 2008. Significant relationships occurred for (a) Prochlorococcus; r2 = 0.75, F1,16 = 48.76, p < 0.001, (b) Synechococcus: r2 = 0.60, F1,16 = 24.13, p < 0.001, (c) picoeukaryotes; r2 = 0.61, F1,16 = 24.89, p < 0.001 (lines represent the best least squares fit). The relationship was not significant for bacterioplankton; r2 = 0.13, F1,16 = 2.40, p = 0.14 and virioplankton; r2 = 0.07, F1,16 = 1.20, p = 0.288 (hence no regression lines are included). Note that the scaling of cell concentrations (x axis) and uptake rates m (y axis) differs for each group of cells. (EPS 443 kb)

ESM, Fig. 2

Positive uptake coefficients S (m d−1) versus current velocity U (m s−1) over thereef crest and reef flat for (a) Prochlorococcus, (b) Synechococcus, (c) picoeukaryotes, (d)heterotrophic microbes and (e) viruses. Black closed circles denote values in May and opencircles represent values in November 2008. Significant relationship between water velocity Uand reef crest and flat uptake coefficients S during May and Nov 2008 for (a)Prochlorococcus; r2 = 0.19; F1,8 = 4.01, p = 0.05, (b) Synechococcus; r2 = 0.63, F1,13 = 53.1, p< 0.001, (c) picoeukaryotes r2 = 0.41, F1,13 = 21.13, p < 0.001, (d) bacterioplankton; r2=0.27,F1,14 = 12.12, p < 0.01, and (e) virioplankton; r2 = 0.09, F1,8 = 2.56, p = 0.12. (EPS 3,497 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patten, N.L., Wyatt, A.S.J., Lowe, R.J. et al. Uptake of picophytoplankton, bacterioplankton and virioplankton by a fringing coral reef community (Ningaloo Reef, Australia). Coral Reefs 30, 555–567 (2011). https://doi.org/10.1007/s00338-011-0777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-011-0777-8

Keywords

Navigation