Skip to main content
Log in

Organic matter release by dominant hermatypic corals of the Northern Red Sea

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Particulate organic matter (POM) and dissolved organic carbon (DOC) release by six dominant hermatypic coral genera (Acropora, Fungia, Goniastrea, Millepora, Pocillopora and Stylophora) were measured under undisturbed conditions by laboratory incubations during four seasonal expeditions to the Northern Red Sea. In addition, the influence of environmental factors (water temperature, light availability and ambient inorganic nutrient concentrations) was evaluated. Particulate organic carbon (POC) and particulate nitrogen (PN) release were always detectable and genus-specific, with Stylophora releasing most POM (6.5 mg POC and 0.5 mg PN m−2 coral surface area h−1) during all seasons. The fire coral Millepora released significantly less POM (0.3 mg POC and 0.04 mg PN m−2 coral surface area h−1) than all investigated anthozoan genera. The average POC:PN ratio of POM released by all coral genera was 12 ± 1, indicating high carbon/low nitrogen content of coral-derived organic matter. POM release showed little seasonal variation, but average values of POC and PN release rates correlated with water temperature, light availability and ambient nitrate concentrations. DOC net release and elevated DOC:POC ratios were detectable for Acropora, Goniastrea and Millepora, revealing maximum values for Acropora (30.7 mg DOC m−2 coral surface area h−1), whilst predominant DOC uptake was observed for Pocillopora, Fungia and Stylophora. Depth-mediated light availability influenced DOC fluxes of Acropora and Fungia, while fluctuations in water temperature and ambient inorganic nutrient concentrations showed no correlation. These comprehensive data provide an important basis for the understanding of coral reef organic matter dynamics and relevant environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Al-Moghrabi S, Allemand D, Jaubert J (1993) Valine uptake by the scleractinian coral Galaxea fascicularis: characterization and effect of light and nutritional status. J Comp Physiol B 163:355–362

    Article  CAS  Google Scholar 

  • Benson A, Muscatine L (1974) Wax in coral mucus–energy transfer from corals to reef fishes. Limnol Oceanogr 19:810–814

    Article  Google Scholar 

  • Brown BE, Bythell JC (2005) Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser 296:291–309

    Article  CAS  Google Scholar 

  • Coffroth MA (1990) Mucous sheet formation on poritid corals–an evaluation of coral mucus as a nutrient source on reefs. Mar Biol 105:39–49

    Article  CAS  Google Scholar 

  • Crossland CJ (1984) Seasonal variations in the rates of calcification and productivity in the coral Acropora formosa on a high-latitude reef. Mar Ecol Prog Ser 15:135–140

    Article  CAS  Google Scholar 

  • Crossland CJ (1987) In situ release of mucus and DOC-lipid from the corals Acropora variabilis and Stylophora pistillata in different light regimes. Coral Reefs 6:35–42

    Article  CAS  Google Scholar 

  • Drollet JH, Glaziou P, Martin PMV (1993) A study of mucus from the solitary coral Fungia fungites (Scleractinia: Fungiidae) in relation to photobiological UV adaptation. Mar Biol 115:263–266

    Article  Google Scholar 

  • Falkowski PG, Dubinsky Z (1981) Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature 289:172–174

    Article  Google Scholar 

  • Ferrier-Pages C, Gattuso JP, Cauwet G, Jaubert J, Allemand D (1998) Release of dissolved organic carbon and nitrogen by the zooxanthellate coral Galaxea fascicularis. Mar Ecol Prog Ser 172:265–274

    Article  CAS  Google Scholar 

  • Ferrier-Pages C, Leclercq N, Jaubert J, Pelegri SP (2000) Enhancement of pico- and nanoplankton growth by coral exudates. Aquat Microb Ecol 21:203–209

    Article  Google Scholar 

  • Grasshoff K, Ehrhardt M, Kremling K (1999) Methods of seawater analysis, 3rd edn. Wiley-Verlag Chemie, Weinheim

    Google Scholar 

  • Grover R, Maguer JF, Reynaud-Vaganay S, Ferrier-Pages C (2002) Uptake of ammonium by the scleractinian coral Stylophora pistillata: effect of feeding, light and ammonium concentrations. Limnol Oceangr 47:782–790

    Article  Google Scholar 

  • Grover R, Maguer JF, Allemand D, Ferrier-Pages C (2003) Nitrate uptake in the scleractinian coral Stylophora pistillata. Limnol Oceangr 48:2266–2274

    Article  CAS  Google Scholar 

  • Herndl GJ, Velimirov B (1986) Microheterotrophic utilization of mucus released by the Mediterranean coral Cladocora cespitosa. Mar Biol 90:363–369

    Article  Google Scholar 

  • Hoegh-Guldberg O, Williamson J (1999) Availability of two forms of dissolved nitrogen to the coral Pocillopora damicornis and its symbiotic zooxanthellae. Mar Biol 133:561–570

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, McCloskey LR, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the Red Sea. Coral Reefs 5:201–204

    Article  Google Scholar 

  • Huettel M, Wild C, Gonelli S (2006) Mucus trap in coral reefs: formation and temporal evolution of particle aggregates caused by coral mucus. Mar Ecol Prog Ser 307:69–84

    Article  Google Scholar 

  • Johannes R (1967) Ecology of organic aggregates in the vicinity of a coral reef. Limnol Oceanogr 12:189–195

    Article  Google Scholar 

  • Krupp DA (1984) Mucus production by corals exposed during an extreme low tide. Pac Sci 38:1–11

    Google Scholar 

  • Krupp DA (1985) An immunochemical study of the mucus from the solitary coral Fungia scutaria (Scleractinia, Fungiidae). Bull Mar Sci 36:163–176

    Google Scholar 

  • Lazar B, Loya Y (1991) Bioerosion of coral reefs—a chemical approach. Limnol Oceanogr 36:377–383

    Article  CAS  Google Scholar 

  • Loram JE, Trapido-Rosenthal HG, Douglas AE (2007) Functional significance of genetically different symbiotic algae Symbiodinium in a coral reef symbiosis. Mol Ecol 16:4849–4857

    Article  CAS  PubMed  Google Scholar 

  • Loya Y (1978) Plotless and transect methods. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. United Nations Educational, Scientific and Cultural Organization, Paris, pp 197–217

    Google Scholar 

  • Marshall M (1968) Observations on organic aggregates in the vicinity of coral reefs. Mar Biol 2:50–55

    Article  Google Scholar 

  • Marshall AT, Wright OP (1993) Confocal laser scanning light microscopy of the extra-thecal epithelia of undecalcified scleractinian corals. Cell Tissue Res 272:533–543

    Article  Google Scholar 

  • Marubini F, Davies PS (1996) Nitrate increases zooxanthellae population density and reduces skeletogenesis in corals. Mar Biol 127:319–328

    Article  CAS  Google Scholar 

  • Meikle P, Richards GN, Yellowlees D (1987) Structural determination of the oligosaccharide side-chains from a glycoprotein isolated from the mucus of the coral Acropora formosa. J Biol Chem 262:16941–16947

    CAS  PubMed  Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z, Cook PA, McCloskey LR (1989) The effect of external nutrient resources on the population dynamics of zooxanthellae in a reef coral. Proc R Soc Lond B 236:311–324

    Article  Google Scholar 

  • Nadon MO, Stirling G (2006) Field and simulation analyses of visual methods for sampling coral cover. Coral Reefs 25:177–185

    Article  Google Scholar 

  • Naumann MS, Richter C, el-Zibdah M, Wild C (2009a) Coral mucus as an efficient trap for picoplanktonic cyanobacteria–implications for pelagic-benthic coupling in the reef ecosystem. Mar Ecol Prog Ser 385:65–76

    Article  Google Scholar 

  • Naumann MS, Niggl W, Laforsch C, Glaser C, Wild C (2009b) Coral surface area quantification–evaluation of established methods by comparison with computer tomography. Coral Reefs 28:109–117

    Article  Google Scholar 

  • Niggl W, Glas M, Laforsch C, Mayr C, Wild C (2009) First evidence of coral bleaching stimulating organic matter release by reef corals. Proc 11th Int Coral Reef Symp: 905–911

  • Rasheed M, Badran MI, Richter C, Huettel M (2002) Effect of reef framework and bottom sediment on nutrient enrichment in a coral reef of the Gulf of Aqaba, Red Sea. Mar Ecol Prog Ser 239:277–285

    Article  Google Scholar 

  • Richman S, Loya Y, Slobodkin L (1975) Rate of mucus production by corals and its assimilation by the coral reef copepod Acartia negligens. Limnol Oceanogr 20:918–923

    Article  Google Scholar 

  • Ritchie KB (2006) Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser 322:1–14

    Article  CAS  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Schuhmacher H (1977) Ability of fungiid corals to overcome sedimentation. Proc 3rd Int Coral Reef Symp 1:503–509

    Google Scholar 

  • Sebens KP, Vandersall KS, Savina LA, Graham KR (1996) Zooplankton capture by two scleractinian corals, Madracis mirabilis and Montastrea cavernosa, in a field enclosure. Mar Biol 127:303–317

    Article  Google Scholar 

  • Stimson J, Kinzie RA (1991) The temporal pattern and rate of release of zooxanthellae from the reef coral Pocillopora damicornis (Linnaeus) under nitrogen-enrichment and control conditions. J Exp Mar Biol Ecol 153:63–74

    Article  Google Scholar 

  • Tanaka Y, Miyajima T, Koike I, Hayashibara T, Ogawa H (2008) Production of dissolved and particulate organic matter by the reef-building corals Porites cylindrica and Acropora pulchra. Bull Mar Sci 82:237–245

    Google Scholar 

  • Treignier C, Grover R, Ferrier-Pages C (2008) Effect of light and feeding on the fatty acid and sterol composition of zooxanthellae and host tissue isolated from the scleractinian coral Turbinaria reniformis. Limnol Oceanogr 53:2702–2710

    CAS  Google Scholar 

  • Wild C, Huettel M, Klueter A, Kremb SG, Rasheed M, Jørgensen BB (2004a) Coral mucus functions as an energy carrier and particle trap in the reef ecosystem. Nature 428:66–70

    Article  CAS  PubMed  Google Scholar 

  • Wild C, Rasheed M, Werner U, Franke U, Johnstone R, Huettel M (2004b) Degradation and mineralization of coral mucus in reef environments. Mar Ecol Prog Ser 267:159–171

    Article  Google Scholar 

  • Wild C, Woyt H, Huettel M (2005a) Influence of coral mucus on nutrient fluxes in carbonate sands. Mar Ecol Prog Ser 287:87–98

    Article  CAS  Google Scholar 

  • Wild C, Rasheed M, Jantzen C, Cook P, Struck U, Boetius A (2005b) Benthic metabolism and degradation of natural particulate organic matter in carbonate and silicate reef sands of the Northern Red Sea. Mar Ecol Prog Ser 298:69–87

    Article  CAS  Google Scholar 

  • Wild C, Mayr C, Wehrmann LM, Schöttner S, Naumann M, Hoffmann F, Rapp HT (2008) Organic matter release by cold water corals and its implication for fauna-microbe interaction. Mar Ecol Prog Ser 372:67–75

    Article  CAS  Google Scholar 

  • Wild C, Haas A, Naumann MS, Mayr C, El-Zibdah M (2009a) Comparative investigation of organic matter release by corals and benthic reef algae—implications for pelagic and benthic microbial metabolism. Proc 11th Int Coral Reef Symp: 1319–1323

  • Wild C, Naumann MS, Haas A, Struck U, Mayer FW, Rasheed MY, Huettel M (2009b) Coral sand O2 uptake and pelagic–benthic coupling in a subtropical fringing reef, Aqaba, Red Sea. Aquat Biol 6:133–142

    Article  Google Scholar 

  • Wolf-Vecht A, Paldora N, Brenner S (1992) Hydrographic indications of advection/convection effects in the Gulf of Eilat. Deep-sea Res 39:1393–1401

    Article  Google Scholar 

  • Yahel R, Yahel G, Genin A (2005) Near-bottom depletion of zooplankton over coral reefs: I: diurnal dynamics and size distribution. Coral Reefs 24:75–85

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Khalaf and the late Y. Ahmed (Marine Science Station, Aqaba, Jordan); C. Jantzen, F. Mayer, W. Niggl and C. Walcher (CORE, München) for technical and logistical support. C. Williamson (CORE, München) helped to improve the language of the manuscript. We thank the editor Dr. Clay Cook and three anonymous reviewers for their valuable comments. This study was supported by German Research Foundation (DFG) grant Wi 2677/2-1 to C.W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Naumann.

Additional information

Communicated by Dr. Clay Cook

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naumann, M.S., Haas, A., Struck, U. et al. Organic matter release by dominant hermatypic corals of the Northern Red Sea. Coral Reefs 29, 649–659 (2010). https://doi.org/10.1007/s00338-010-0612-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-010-0612-7

Keywords

Navigation