Advertisement

Coral Reefs

, Volume 29, Issue 2, pp 413–418 | Cite as

Stable oxygen isotope records of corals and a sclerosponge in the Western Pacific warm pool

  • H. C. Wu
  • A. G. GrottoliEmail author
Note

Abstract

High-resolution measurements of the stable oxygen isotopic signature (δ18O) of two new 10-year Porites lobata coral cores and one previously studied multi-decadal sclerosponge Acanthocheatetes wellsi from the Republic of Palau (7°16′N, 134°31′E) located in the Western Pacific warm pool were analyzed and monthly interpolated time-series records developed. Despite significant differences in collection depth and growth rates, both coral and sclerosponge faithfully recorded the interannual changes of sea surface salinity (SSS) driven by the strong influence of the El Niño Southern Oscillation (ENSO). The strong relationship of coral skeletal δ18O with SSS, but not sea surface temperature or precipitation, confirms previous findings that changes in Palau regional surface water are driven by the advection of water masses into the area over interannual timescales associated with ENSO. Opportunities exist for the expansion of short coral proxy records with longer sclerosponge records to verify the stability of ENSO-induced SSS variability over longer timescales.

Keywords

Coral δ18Sclerosponge El Niño Southern oscillation Western Pacific warm pool Salinity 

Notes

Acknowledgments

We thank the following people and organizations for their assistance: J. Bauer, M. Cathey, P. Colin, O. Gibb, D. Idip, T. Isamu, J. Kloulechad, J. Palardy, B. Linsley, A. Srock, Palau International Coral Reef Center, Coral Reef Research Foundation, Palau Division of Marine Resources, Palau Ministry of Resources & Development. We also thank two reviewers for their constructive feedback and comments on the manuscript. HCW was a graduate student in the lab of AGG during the execution of this project. Major funding for this work was provided to AGG by the American Society for Mass Spectrometry, the Mellon Foundation, and the National Science Foundation (Chemical Oceanography, OCE#0426022 and 0610487).

Supplementary material

338_2009_576_MOESM1_ESM.pdf (166 kb)
(PDF 166 kb)

References

  1. Allison N, Tudhope AW, Fallick AE (1996) Factors influencing the stable carbon and oxygen isotopic composition of Porites lutea coral skeletons from Phuket, South Thailand. Coral Reefs 15:43–57Google Scholar
  2. Asami R, Yamada T, Iryu Y, Quinn TM, Meyer CP, Paulay G (2005) Interannual and decadal variability of the western Pacific sea surface condition for the year 1787-2000: Reconstruction based on stable isotope record from a Guam coral. J Geophys Res 110. doi: 10.1029/2004JC002555
  3. Bruno JF, Siddon CE, Witman JD, Colin PL, Toscano MA (2001) El Niño related coral bleaching in Palau, Western Caroline Islands. Coral Reefs 20:127–136CrossRefGoogle Scholar
  4. Cohen AL, Hart SR (1997) The effect of colony topography on climate signals in coral skeleton. Geochim Cosmochim Acta 61:3905–3912CrossRefGoogle Scholar
  5. Cole JE, Fairbanks RG (1990) The southern oscillation recorded in the δ18O of corals from Tarawa Atoll. Paleoceanography 5:669–683CrossRefGoogle Scholar
  6. Delcroix T, Henin C, Porte V, Arkin P (1996) Precipitation and sea-surface salinity in the tropical Pacific Ocean. Deep-Sea Res 43:1123–1141CrossRefGoogle Scholar
  7. Delcroix T, McPhaden MJ, Dessier A, Gouriou Y (2005) Time and space scales for sea surface salinity in the tropical oceans. Deep-Sea Res 52:787–813CrossRefGoogle Scholar
  8. Druffel ER (1997) Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate. Proc Natl Acad Sci USA 94:8354–8361CrossRefPubMedGoogle Scholar
  9. Dunbar RB, Wellington GM, Colgan MW, Glynn PW (1994) Eastern Pacific sea surface temperature since 1600 A.D.: The δ18O record of climate variability in Galapagos corals. Paleoceanography 9:291–315CrossRefGoogle Scholar
  10. Epstein S, Buchsbaum R, Lowenstam HA, Urey HC (1953) Revised carbonate-water isotopic temperature scale. Geol Soc Am Bull 64:1315–1326CrossRefGoogle Scholar
  11. Fairbanks RG, Evans MN, Rubenstone JL, Mortlock RA, Broad K, Moore MD, Charles CD (1997) Evaluating climate indices and their geochemical proxies measured in corals. Coral Reefs 16s:93–100CrossRefGoogle Scholar
  12. Fallon SJ, Guilderson TP (2005) Extracting growth rates from nonlaminated coralline sponge Astrosclera willeyana using bomb radiocarbon. Limnol Oceanogr Methods 3:455–461Google Scholar
  13. Felis T, Patzold J, Loya Y (2003) Mean oxygen-isotope signature in Porites spp. corals: Inter-colony variability and correction for extension-rate effects. Coral Reefs 22:328–336CrossRefGoogle Scholar
  14. Gagan MK, Chivas AR, Isdale PJ (1994) High-resolution isotopic records from corals using ocean temperature and mass-spawning chronometers. Earth Planet Sci Lett 121:549–558CrossRefGoogle Scholar
  15. Grottoli AG (2006) Monthly resolved stable oxygen isotope record in a Palauan sclerosponge Acanthocheatetes wellsi for the period of 1977-2001. Proc 10th Int Coral Reef Symp: 272–275Google Scholar
  16. Grottoli AG, Eakin CM (2007) A review of modern coral δ18O and ∆14C proxy records. Earth-Sci Rev 81:67–91CrossRefGoogle Scholar
  17. Grottoli AG, Wellington GM (1999) Effect of light and zooplankton on skeletal δ13C values in the eastern Pacific corals Pavona calvus and Pavona gigantean. Coral Reefs 18:29–41CrossRefGoogle Scholar
  18. Iijima H, Kayanne H, Morimoto M, Abe O (2005) Interannual sea surface salinity changes in the western Pacific from 1954 to 2000 based on coral isotope analysis. Geophys Res Lett 32. doi: 10.1029/2004GL022026
  19. Ishii M, Kimoto M, Sakamoto K, Iwasaki SI (2006) Steric sea level changes estimated from historical ocean subsurface temperature and salinity analyses. J. Oceanography 62:155–170CrossRefGoogle Scholar
  20. Kim ST, O’Neil JR (1997) Temperature dependence of δ18O. Geochim Cosmochim Acta 61:3461–3475CrossRefGoogle Scholar
  21. Lough JM (2004) A strategy to improve the contribution of coral data to high-resolution paleoclimatology. Palaeogeogr Palaeoclimatol Palaeoecol 204:115–143CrossRefGoogle Scholar
  22. McConnaughey TA (1989) 13C and 18O isotopic disequilibrium in biological carbonates: 1. Patterns. Geochim Cosmochim Acta 53:151–162CrossRefGoogle Scholar
  23. Morimoto M, Abe O, Kayanne H, Kurita N, Matsumoto E, Yoshida N (2002) Salinity records for the 1997–98 El Nino from Western Pacific corals. Geophys Res Lett 29:31–34CrossRefGoogle Scholar
  24. Reynolds RW, Smith TM (1994) Improved global sea surface temperature analyses using optimum interpolation. J Clim 7:929–948CrossRefGoogle Scholar
  25. Reynolds RW, Rayner NA, Smith TM, Stokes DC, Wang W (2002) An improved in situ and satellite SST analysis for climate. J Clim 15:1609–1625CrossRefGoogle Scholar
  26. Rosenheim BE, Swart PK, Thorrold SR, Willenz P, Berry L, Latkoczy C (2004) High resolution Sr/Ca records in sclerosponges calibrated to temperature in situ. Geology 32:145–148CrossRefGoogle Scholar
  27. Swart PK, Thorrold S, Rosenheim BE, Eisenhauer A, Harrison CG, Grammer M, Latkoczy C (2002) Intra-annual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography 17. doi: 1010.1029/2000PA000622
  28. Wellington GM, Dunbar RR, Merlen G (1996) Calibration of stable oxygen isotope signature in Galapagos corals. Paleoceanography 11:467–480CrossRefGoogle Scholar
  29. Willenz P, Hartman WD (1989) Micromorphology and ultrastructure of Caribbean sclerosponges. I. Ceratoporella nicholsoni and Stromatospongia norae (Ceratoporellida: Porifera). Mar Biol 103:387–401CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  1. 1.Department of Atmospheric and Environmental SciencesUniversity at Albany, State University of New YorkAlbanyUSA
  2. 2.School of Earth SciencesThe Ohio State UniversityColumbusUSA

Personalised recommendations