Skip to main content

Advertisement

Log in

Ocean acidification and calcifying reef organisms: a mesocosm investigation

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

A long-term (10 months) controlled experiment was conducted to test the impact of increased partial pressure of carbon dioxide (pCO2) on common calcifying coral reef organisms. The experiment was conducted in replicate continuous flow coral reef mesocosms flushed with unfiltered sea water from Kaneohe Bay, Oahu, Hawaii. Mesocosms were located in full sunlight and experienced diurnal and seasonal fluctuations in temperature and sea water chemistry characteristic of the adjacent reef flat. Treatment mesocosms were manipulated to simulate an increase in pCO2 to levels expected in this century [midday pCO2 levels exceeding control mesocosms by 365 ± 130 μatm (mean ± sd)]. Acidification had a profound impact on the development and growth of crustose coralline algae (CCA) populations. During the experiment, CCA developed 25% cover in the control mesocosms and only 4% in the acidified mesocosms, representing an 86% relative reduction. Free-living associations of CCA known as rhodoliths living in the control mesocosms grew at a rate of 0.6 g buoyant weight year−1 while those in the acidified experimental treatment decreased in weight at a rate of 0.9 g buoyant weight year−1, representing a 250% difference. CCA play an important role in the growth and stabilization of carbonate reefs, so future changes of this magnitude could greatly impact coral reefs throughout the world. Coral calcification decreased between 15% and 20% under acidified conditions. Linear extension decreased by 14% under acidified conditions in one experiment. Larvae of the coral Pocillopora damicornis were able to recruit under the acidified conditions. In addition, there was no significant difference in production of gametes by the coral Montipora capitata after 6 months of exposure to the treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Agegian CR (1985) The biogeochemical ecology of Porolithon gardineri (Foslie). Ph.D. thesis, University of Hawaii, p 178

  • Adey WH (1998) Coral reefs: algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J Phycol 34:393–406

    Article  Google Scholar 

  • Adey WH, Macintyre IG (1973) Crustose coralline algae: a re-evaluation in the geological sciences. Geol Soc Am Bull 84:883–904

    Article  Google Scholar 

  • Andersson AJ, Bates NR, Mackenzie FT (2007) Dissolution of carbonate sediments under rising pCO2 and ocean acidification: observations from devil’s hole, Bermuda. Aquat Geochem 13:237–264

    Article  CAS  Google Scholar 

  • Babcock RC, Bull GD, Harrison PL, Heyward AJ, Oliver JK, Wallace CC, Willis BL (1986) Synchronous spawning of 105 species of scleractinian coral species on the Great Barrier Reef. Mar Biol 90:379–394

    Article  Google Scholar 

  • Bacastow RD, Keeling CD (1973) Atmospheric carbon dioxide and radiocarbon in the natural carbon cycle: II. Changes from A.D. 1700 to 2070 as deduced from a geochemical model. In: Woodwell GM, Pecan EV (eds) Carbon and the biosphere. U.S. Atomic Energy Commission, Washington DC, pp 86–135

    Google Scholar 

  • Bates NR (2002) Seasonal variability of the effect of coral reefs on seawater CO2 and air-sea CO2 exchange. Limnol Oceanogr 47:43–52

    CAS  Google Scholar 

  • Bates NR, Samuels L, Merlivat L (2001) Biogeochemical and physical factors influencing seawater fCO2 and air–sea CO2 exchange on the Bermuda coral reef. Limnol Oceanogr 46:833–846

    CAS  Google Scholar 

  • Bird C (2002) PhotoGrid—ecological analysis of digital photos. Available as “shareware” at http://www.photogrid.netfirms.com/

  • Bosence DWJ (1983) The occurrence and ecology of recent rhodoliths—a review. In: Tadeusz MP (ed) Coated grains. Springer-Verlag, Heidelberg, pp 225–242

    Google Scholar 

  • Brock RE (1979) An experimental study on the effects of grazing by parrotfishes and role of refuges in benthic community structure. Mar Biol 51:381–388

    Article  Google Scholar 

  • Caldeira K, Wickett ME (2003) Anthropogenic carbon and ocean pH. Nature 425:365

    Article  PubMed  CAS  Google Scholar 

  • Cox EF (2007) Continuation of sexual reproduction in Montipora capitata following bleaching. Coral Reefs 26:721–724

    Article  Google Scholar 

  • Dodge R, Wyers S, Frith HR, Knap AH, Cook C, Smith R, Sleeter TD (1984) Coral calcification rates by the buoyant weight technique: effects of alizarin staining. J Exp Mar Biol Ecol 75:217–232

    Article  Google Scholar 

  • Feely RA, Sabine CL, Lee K, Berelson W, Kleypas J, Fabry VJ, Millero FJ (2004) Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305:362–366

    Article  PubMed  CAS  Google Scholar 

  • Foster MS, Riosmena-Rodriguez R, Steller DL, Woelkerling WJ (1997) Living rhodolith beds in the Gulf of California and their implications for paleoenvironmental interpretation. Geol Soc Am Spec Pap 318:127–139

    Google Scholar 

  • Fine M, Tchernov D (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  PubMed  CAS  Google Scholar 

  • Frantz BR, Kashgarian M, Coale KH, Foster MS (2000) Growth rate and potential climate record from a rhodolith using 14C accelerator mass spectrometry. Limnol Oceanogr 45:1773–1777

    Google Scholar 

  • Gattuso J-P, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Global Planet Change 18:37–46

    Article  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183

    CAS  Google Scholar 

  • Grottolli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  CAS  Google Scholar 

  • Heyward AJ, Negri AP (1999) Natural inducers for coral larval metamorphosis. Coral Reefs 18:273–279

    Article  Google Scholar 

  • Hinojosa-Arango G, Riosmena-Rodríguez R (2004) Influence of rhodolith-forming species and growth-form on associated fauna of rhodolith beds in the Central-West Gulf of California, México. Mar Ecol 25:109–127

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  PubMed  CAS  Google Scholar 

  • Hudson JHH (1981) Response of Montastrea annularis to environmental change in the Florida Keys. Proc 4th Int Coral Reef Symp 2:233–248

    Google Scholar 

  • IPCC (2001) Climate Change 2001: the scientific basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • IPCC (2007) Climate Change 2007: the physical science basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge

  • Jokiel PL, Guinther EB (1978) Effects of temperature on reproduction in the hermatypic coral Pocillopora damicornis. Bull Mar Sci 28:786–789

    Google Scholar 

  • Jokiel PL, Maragos JE, Franzisket L (1978) Coral growth: buoyant weight technique. In: Stoddart DR, Johannes RE (eds) Coral reefs: research methods. UNESCO monographs on oceanographic methodology, Paris, pp 529–542

  • Kayanne H, Suzuki A, Saito H (1995) Diurnal change in the partial pressure of carbon dioxide in coral reef water. Science 269:214–216

    Article  PubMed  CAS  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer A, Gattuso J-P, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  PubMed  CAS  Google Scholar 

  • Kolinski SP, Cox EF (2003) An update on the modes and timing of gamete and planula release in Hawaiian scleractinian corals with implications for conservation and management. Pac Sci 57:17–27

    Article  Google Scholar 

  • Kuffner IB, Andersson AJ, Jokiel PL, Rodgers KS, Mackenzie FT (2008) Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geoscience 1:114–117

    Article  CAS  Google Scholar 

  • Lamberts AE (1974) Measurement of alizarin deposited by coral. Proc 2nd Int Coral Reef Symp 2:241–244

    CAS  Google Scholar 

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110, C09S07. doi:10.1029/2004JC002576

  • Langdon C, Takahashi T, Sweeney C, Chipman D, Goddard J, Marubini F, Aceves H, Barnett H, Atkinson MJ (2000) Effect of calcium carbonate saturation state on the calcification rate of an experimental coral reef. Global Biogeochem Cycles 14:639–654

    Article  CAS  Google Scholar 

  • Langdon C, Broecker W, Hammond D, Glenn E, Fitzsimmons K, Nelson SG, Peng T-H, Hajdas I, Bonani G (2003) Effect of elevated CO2 on the community metabolism of an experimental coral reef. Global Biogeochem Cycles 17:11–1 to 11–14

    Google Scholar 

  • Leclercq N, Gattuso J-P, Jaubert J (2000) CO2 partial pressure controls the calcification rate of a coral community. Global Change Biol 6:329–334

    Article  Google Scholar 

  • Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47:558–564

    CAS  Google Scholar 

  • Mackenzie FT, Agegian C (1989) Biomineralization and tentative links to plate tectonics. In: Crick R (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 11–28

    Google Scholar 

  • Mackenzie FT, Lerman A, Ver LM (2001) Recent past and future of the global carbon cycle. In: Gerhard LC, Harrison WE, Hanson BM (eds) Geological perspectives of global climate change. AAPG Studies in Geology #47, Tulsa, pp 51–82

    Google Scholar 

  • Marubini F, Atkinson MJ (1999) Effects of lowered pH and elevated nitrate on coral calcification. Mar Ecol Prog Ser 188:117–121

    Article  CAS  Google Scholar 

  • Marubini F, Barnett H, Langdon C, Atkinson MJ (2001) Dependence of calcification on light and carbonate ion concentration for the hermatypic coral Porites compressa. Mar Ecol Prog Ser 220:153–162

    Article  CAS  Google Scholar 

  • Marubini F, Ferrier-Pages C, Cuif JP (2003) Suppression of growth in scleractinian corals by decreasing ambient carbonate ion concentration: a cross-family comparison. Proc Roy Soc Lond B 270:179–184

    Article  Google Scholar 

  • Morse DE, Hooker N, Morse ANC, Jensen RA (1988) Control of larval metamorphosis and recruitment in sympatric agariciid corals. J Exp Mar Biol Ecol 116:193–217

    Article  Google Scholar 

  • Morse JW, Andersson AJ, Mackenzie FT (2006) Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ocean acidification: role of high Mg-calcites. Geochim Cosmochim Acta 70:5814–5830

    Article  CAS  Google Scholar 

  • Ohde S, Hossain MMM (2004) Effect of CaCO3 (aragonite) saturation state of seawater on calcification of Porites coral. Geochem J 38:613–621

    CAS  Google Scholar 

  • Ohde S, van Woesik R (1999) Carbon dioxide flux and metabolic processes of a coral reef, Okinawa. Bull Mar Sci 65:559–576

    Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner GK, Rodgers KB, Sabine CL, Sarmineto JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig MF, Yamanaka Y, Yool A (2005) Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    Article  PubMed  CAS  Google Scholar 

  • Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668

    Article  Google Scholar 

  • Renegar DA, Riegl BM (2005) Effect of nutrient enrichment and elevated CO2 partial pressure on growth rate of Atlantic scleractinian coral Acropora cervicornis. Mar Ecol Prog Ser 293:69–76

    Article  Google Scholar 

  • Sabine CL, Feely RA, Gruber N, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DWR, Tilbrook B, Millero FJ, Peng T-H, Kozyr A, Ono T, Rios AF (2004) The oceanic sink for anthropogenic CO2. Science 305:367–371

    Article  PubMed  CAS  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Vargas-Ángel B, Colley SB, Hoke SM, Thomas JD (2006) The reproductive seasonality and gametogenic cycle of Acropora cervicornis off Broward County, Florida, USA. Coral Reefs 25:110–122

    Article  Google Scholar 

  • Willis BL, Babcock RC, Harrison PL, Oliver JK, Wallace CC (1985) Patterns in the mass spawning of corals on the Great Barrier Reef from 1981 to 1984. Proc 5th Int Coral Reef Symp 4:343–334

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by EPA Star Grant R832224-010 NOAA, National Ocean Service MOA 2005-008/6882 Amendment No. 001, “Research in Support of the NWHI Coral Reef Ecosystem Reserve, HIMB, SOEST, UH Manoa” (Dr. Jo-Ann Leong, PI), USGS Coastal and Marine Geology Program co-operative agreement 04WRAG001, and NSF grants ATM04-39051 and EAR02-23509 (FTM). Taxonomy of the rhodoliths was determined by Cheryl Squair, UH Botany Department, and the invertebrates by Scott Godwin, Bishop Museum. Assistance of Fred Farrell in these experiments was invaluable. HIMB Contribution No. 1300.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. L. Jokiel.

Additional information

Communicated by Guest Editor Dr. Katharina Fabricius.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jokiel, P.L., Rodgers, K.S., Kuffner, I.B. et al. Ocean acidification and calcifying reef organisms: a mesocosm investigation. Coral Reefs 27, 473–483 (2008). https://doi.org/10.1007/s00338-008-0380-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-008-0380-9

Keywords

Navigation