Skip to main content
Log in

Len Muscatine (1932–2007) and his contributions to the understanding of algal-invertebrate endosymbiosis

  • Perspective
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

The late Leonard (Len) Muscatine (1932–2007) played a key role in the development of the understanding of algal-invertebrate symbioses. For over 40 years (1958–2005), Professor Muscatine was an inspirational mentor and leader in this field, guiding both the ideas and lives of generations of scientists, many of whom are still active in this research area. His scientific contributions were instrumental in crafting the understanding of a fundamentally important part of our world; that of endosymbiosis, where two or more independent organisms live together in a cellular harmony that belies a complex set of molecular and evolutionary interactions. Muscatine’s research career was defined by investigations aimed at unraveling these interactions, particularly the specificity, metabolism, regulation, and disintegration of algal-invertebrate symbiosis. His gentle interrogation of his students and colleagues as to “What is the question?” led more than often to the focused research that yielded the insightful answers that still resonate today as the most current in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Ainsworth TD, Kvennefors EC, Blackall L, Fine M, Hoegh-Guldberg O (2007) Disease and cell death in White Syndrome of Acroporid corals on the Great Barrier Reef. Mar Biol 151:19–29

    Article  Google Scholar 

  • Baker AC (2002) Is bleaching really adaptive?—reply to Hoegh-Guldberg et al. Nature 415:602

    Article  CAS  Google Scholar 

  • Benson AA, Muscatine L (1974) Wax in coral mucus—energy-transfer from corals to reef fishes. Limnol Oceanogr 19:810–814

    Google Scholar 

  • Biel KY, Gates RD, Muscatine L (2007) Effects of free amino acids on the photosynthetic carbon metabolism of symbiotic dinoflagellates. Russ J Plant Physiol 54:171–183

    Article  CAS  Google Scholar 

  • Blank RJ, Muscatine L (1987) How do combinations of nutrients cause symbiotic Chlorella to overgrow Hydra? Symbiosis 3:123–134

    Google Scholar 

  • Brown BE (1997) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Brown BE, Le Tissier MDA, Bythell JC (1995) Mechanisms of bleaching deduced from histological studies of reef corals sampled during a natural bleaching event. Mar Biol 122:655–663

    Article  Google Scholar 

  • Colley NJ, Trench RK (1983) Selectivity in phagocytosis and persistence of symbiotic algae by the scyphistoma stage of the jellyfish. Proc R Soc Lond B 219:61–82

    Google Scholar 

  • Colley NJ, Trench RK (1985) Cellular events in the reestablishment of a symbiosis between a marine dinoflagellate and a coelenterate. Cell Tissue Res 239:93–103

    Article  Google Scholar 

  • Cook CB, Davy SK (2001) Are free amino acids responsible for the “host factor” effects on symbiotic zooxanthellae in extracts of host tissue? Hydrobiologia 461:71–78

    Article  Google Scholar 

  • deBoer M, Krupp DA, Weis VM (2007) Proteomic and transcriptional analyses of coral larvae newly engaged in symbiosis with dinoflagellates. Comp Biochem Physiol Genom Proteonomics 2:63–73

    Article  CAS  Google Scholar 

  • Dunn SR, Bythell JC, Le Tissier MDA, Burnett WJ, Thomason JC (2002) Programmed cell death and cell necrosis activity during hyperthermic stress-induced bleaching of the symbiotic sea anemone Aiptasia sp. J Exp Mar Biol Ecol 272:29–53

    Article  Google Scholar 

  • Dunn SR, Schnitzler C, Weis VM (2007) Apoptosis and autophagy as mechanisms of dinoflagellate symbiont release during cnidarian bleaching: every which way you lose. Proc R Soc Lond B (in press)

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709

    Article  CAS  Google Scholar 

  • Falkowski PG, Dubinsky Z, Muscatine L, McCloskey L (1993) Population control in symbiotic corals. Bioscience 43:606–611

    Article  Google Scholar 

  • Gates RD, Baghdasarian G, Muscatine L (1992) Temperature stress causes host-cell detachment in symbiotic cnidarians—implications for coral bleaching. Biol Bull 182:324–332

    Article  Google Scholar 

  • Gates RD, Hoegh-Guldberg O, Mc-Fall-Ngai MJ, Biel KY, Muscatine L (1995) Free amino acids exhibit anthozoan “host factor” activity: they induce the release of photosynthate from symbiotic dinoflagellates in vitro. Proc Natl Acad Sci USA 92:7430–7434

    Article  PubMed  CAS  Google Scholar 

  • Gates RD, Biel KY, Muscatine L (1999) The influence of an anthozoan “host factor” on the physiology of a symbiotic dinoflagellate. J Exp Mar Biol Ecol 232:241–259

    Article  Google Scholar 

  • Gladfelter EH (1982) Skeletal development in Acropora cervicornis: I patterns of calcium carbonate accretion in the axial corallite. Coral Reefs 1:45–51

    Article  Google Scholar 

  • Gladfelter EH (1983a) Skeletal development and related aspects in the reef coral Acropora cervicornis. Ph.D. thesis, University of California, Los Angeles, p 147

  • Gladfelter EH (1983b) Skeletal development in Acropora cervicornis II diel patterns of calcium carbonate accretion. Coral Reefs 2:91–100

    Article  Google Scholar 

  • Gladfelter EH (1983c) Circulation of fluids in the gastrovascular system of the reef coral Acropora cervicornis. Biol Bull 165:619–636

    Article  Google Scholar 

  • Glynn PW, Peters EC, Muscatine L (1985) Coral tissue microstructure and necrosis: relation to catastrophic coral mortality in Panama. Dis Aquat Org 1:29–37

    Article  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals I a method for measuring the rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals II calcium deposition by hermatypic corals under various conditions in the reef. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Hand C (1956) Are corals really herbivores? Ecology 37:384–385

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Coral bleaching, climate change and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989a) The influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix (Dana 1846) and Stylophora pistillata (Esper 1797). Mar Ecol Prog Ser 57:173-186

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989b) The effect of sudden changes in temperature, irradiance and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata (Esper 1797) and Seriatopora hystrix (Dana 1846). J Exp Mar Biol Ecol 129:279-303

    Article  Google Scholar 

  • Hoegh-Guldberg O, McCloskey LR, Muscatine L (1987) Expulsion of zooxanthellae by symbiotic cnidarians from the Red Sea. Coral Reefs 5:201–204

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ, Ward S, Loh WK (2002) Is coral bleaching really adaptive? Nature 415:601–602

    Article  PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Muscatine L, Goiran C, Siggaard D, Marion G (2004) Nutrient induced perturbations to δ13C and δ15N in symbiotic dinoflagellates and their coral hosts. Mar Ecol Prog Ser 280:105–114

    Article  Google Scholar 

  • Hohman TC, McNeil PL, Muscatine L (1982) Phagosome-lysosome fusion inhibited by algal symbionts of Hydra viridis. J Cell Biol 94:56–63

    Article  PubMed  CAS  Google Scholar 

  • Huang SP, Lin KL, Fang LS (1998) The involvement of calcium in heat-induced coral bleaching. Zool Stud 37:89–94

    CAS  Google Scholar 

  • Johnston IS (1978) Functional ultrastructure of the skeleton and the skeletogenic tissues of the reef coral Pocillopora damicornis. Ph.D. thesis, University of California, Los Angeles, p 162

  • Johnston IS (1980) The ultrastructure of skeletogenesis in hermatypic corals. Intl Rev Cytol 67:171–214

    Article  CAS  Google Scholar 

  • Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid divergence in the model invertebrates. Curr Biol 13:2190–2195

    Article  PubMed  CAS  Google Scholar 

  • Kuo J, Chen MC, Lin CH, Fang LS (2004) Comparative gene expression in the symbiotic and aposymbioticby expressed sequence tag analysis. Biochem Biophys Res Commun 318:176–186

    Article  PubMed  CAS  Google Scholar 

  • Kusserow A, Pang K, Sturm C, Hrouda M, Lentfer J, Schmidt HA, Technau Y, Haeseler A, Hobmayer B, Martindale MQ (2005) Unexpected complexity of the Wnt gene family in a sea anemone. Nature 433:156–160

    Article  PubMed  CAS  Google Scholar 

  • LaJeunesse TC (2005) “Species” radiations of symbiotic dinoflagellates in the Atlantic and Indo-Pacific since the Miocene-Pliocene transition. Mol Biol Evol 22:570–581

    Article  PubMed  CAS  Google Scholar 

  • Leggat W, Hoegh-Guldberg O, Dove S, Yellowlees D (2007) Analysis of an EST library from the dinoflagellate (Symbiodinium sp.) symbiont of reef-building corals. J Phycol (in press)

  • Levy O, Achituv Y, Yacobi YZ, Dubinsky Z, Stambler N (2006) Diel “tuning” of coral metabolism: physiological responses to light cues. J Exp Biol 209:273–283

    Article  PubMed  CAS  Google Scholar 

  • Lewis DH, Smith DC (1971) The autotrophic nutrition of symbiotic marine coelenterates with special reference to hermatypic corals. I movement of photosynthetic products between the symbionts. Proc R Soc Lond B 178:111–129

    CAS  Google Scholar 

  • McAuley PJ, Muscatine L (1986) The cell-cycle of symbiotic Chlorella 4 DNA content of algae slowly increases during host starvation of green Hydra. J Cell Sci 85:73–84

    PubMed  CAS  Google Scholar 

  • McCloskey LR, Muscatine L (1984) Production and respiration in the Red Sea coral Stylophora pistillata as a function of depth. Proc R Soc Lond B 222:215–230

    Google Scholar 

  • McNeil Pl, Hohman TC, Muscatine L (1981) Mechanisms of nutritive endocytosis 2 the effect of charged agents on phagocytic recognition by digestive cells. J Cell Sci 52:243–269

    PubMed  CAS  Google Scholar 

  • Muscatine L (1965) Symbiosis of Hydra and algae–III extracellular products of the algae. Comp Biochem Physiol 16:77–92

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L (1967) Glycerol excretion by symbiotic algae from corals and Tridacna and its control by the host. Science 156:516–519

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L (1971) Calcification in corals. In: Lenhoff HW, Muscatine L, Davis L (eds) Experimental coelenterate biology, University of Hawaii Press, Honolulu, pp 227–238

    Google Scholar 

  • Muscatine L (1974) Endosymbiosis of cnidarians and algae. In: Muscatine L, Lenhoff HM (eds) Coelenterate biology: reviews and new perspectives, Academic, New York, pp 359–395

    Google Scholar 

  • Muscatine L (1989) Adventures in symbiosis. Am Zool 29:1203–1208

    Google Scholar 

  • Muscatine L, Hand C (1958) Direct evidence for the transfer of materials from symbiotic algae to the tissues of a coelenterate. Proc Natl Acad Sci USA 44:1259–1263

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L, Lenhoff HM (1963) Symbiosis: on the role of algae symbiotic with Hydra. Science 142:956–958

    Article  PubMed  Google Scholar 

  • Muscatine L, Lenhoff HM (1965a) Symbiosis of Hydra and Algae 1 effects of some environmental cations on growth of symbiotic and aposymbiotic Hydra. Biol Bull 128:415–424

    Article  CAS  Google Scholar 

  • Muscatine L, Lenhoff HM (1965b) Symbiosis of Hydra and algae II effects of limited food and starvation on growth of symbiotic and aposymbiotic Hydra. Biol Bull 129:316–328

    Article  Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523

    Article  CAS  Google Scholar 

  • Muscatine L, Porter JW (1977) Reef corals: mutualistic symbioses adapted to nutrient-poor environments. BioScience 27:454–459

    Article  Google Scholar 

  • Muscatine L, D’ Elia CF (1978) Uptake, retention, and release of ammonium by reef corals. Limnol Oceanogr 23:725–734

    CAS  Google Scholar 

  • Muscatine L, Neckelmann N (1981) Regulation of numbers of algae in the Hydra-Chlorella symbiosis. Berichte der Deutschen Botanischen Gesellschaft 94:S571–582

    Google Scholar 

  • Muscatine L, Marian RE (1982) Dissolved inorganic nitrogen flux in symbiotic and non-symbiotic medusae. Limnol Oceanogr 27:910–918

    CAS  Google Scholar 

  • Muscatine L, Kaplan IR (1994) Resource partitioning by reef corals as determined from stable isotope composition II δ15N of zooxanthellae and animal tissue versus depth. Pac Sci 48:304–312

    Google Scholar 

  • Muscatine L, Karakashian SJ, Karakashian MW (1967) Soluble extracellular products of algae symbiotic with a ciliate, a sponge and a mutant Hydra. Comp Biochem Physiol 20:1–12

    Article  CAS  Google Scholar 

  • Muscatine L, Pool RR, Cernichiari E (1972) Some factors influencing selective release of soluble organic material by zooxanthellae from reef corals. Mar Biol 13:298–308

    Article  CAS  Google Scholar 

  • Muscatine L, Cook CB, Pardy RL, Pool RR (1975a) Uptake, recognition and maintenance of symbiotic Chlorella by Hydra viridis symbiosis. Symp Soc Exp Biol 24:175–203

    Google Scholar 

  • Muscatine L, Pool RR, Trench RK (1975b) Symbiosis of algae and invertebrates: aspects of the symbiont surface and the host symbiont interface. Trans Am Microsc Soc 94:450–469

    Article  PubMed  CAS  Google Scholar 

  • Muscatine L, Masuda TH, Burnap R (1979) Ammonium uptake by symbiotic and aposymbiotic reef corals. Bull Mar Sci 29:572–575

    CAS  Google Scholar 

  • Muscatine L, McCloskey LR, Marian RE (1981) Estimating the daily contribution of carbon from zooxanthellae to coral animal respiration. Limnol Oceanogr 26:601–611

    Article  CAS  Google Scholar 

  • Muscatine L, Falkowski PG, Dubinsky Z (1983) Carbon budgets in symbiotic associations. In: Schwemmler W, Schenk HEA (eds) Endocytobiology: endocytobiosis and cell biology. Walter de Gruyter and Co, Berlin, pp 649–658

    Google Scholar 

  • Muscatine L, Falkowski PG, Porter JW, Dubinsky Z (1984) Fate of photosynthetic fixed carbon in light- and shade- adapted colonies of the symbiotic coral Stylophora pistillata. Proc R Soc Lond B 222:181–202

    Article  CAS  Google Scholar 

  • Muscatine L, Wilkerson FP, McCloskey LR (1986) Regulation of population density of symbiotic algae in a tropical marine jellyfish (Mastigias sp). Mar Ecol Prog Ser 32:279–290

    Article  Google Scholar 

  • Muscatine L, Porter JW, Kaplan IR (1989) Resource partitioning by reef corals as determined from stable isotope composition 1 delta-C−13 of zooxanthellae and animal tissue vs depth. Mar Biol 100:185–193

    Article  Google Scholar 

  • Muscatine L, Grossman D, Doino J (1991) Release of symbiotic algae by tropical sea anemones and corals after cold shock. Mar Ecol Progr Ser 77:233–243

    Article  Google Scholar 

  • Muscatine L, Tambutte E, Allemand D (1997) Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs 16:205–213

    Article  Google Scholar 

  • Muscatine L, Goiran C, Land L, Jaubert J, Cuif JP, Allemand D (2005) Stable isotopes (δC-13 and δN-15) of organic matrix from coral skeleton. Proc Natl Acad Sci USA 102:1525–1530

    Article  PubMed  CAS  Google Scholar 

  • Nii CM, Muscatine L (1997) Oxidative stress in the symbiotic sea anemone Aiptasia pulchella (Carlgren, 1943): contribution of the animal to superoxide ion production at elevated temperature. Biol Bull 192:444–456

    Article  CAS  Google Scholar 

  • Odum HT, Odum EP (1956) Corals as producers, herbivores, carnivores, and possibly decomposers. Ecology 37:385

    Article  Google Scholar 

  • Pardy RL, Muscatine L (1973) Recognition of symbiotic algae by Hydra viridis a quantitative study of the uptake of living algae by aposymbiotic H. virdis. Biol Bull 145:565–579

    Article  Google Scholar 

  • Pearse VB, Muscatine L (1971) Role of symbiotic algae (zooxanthellae) in coral calcification. Biol Bull 141:350–363

    Article  CAS  Google Scholar 

  • Perez S, Weis VM (2006) Nitric oxide and cnidarian bleaching: an eviction notice mediates the breakdown of symbiosis. J Exp Biol 209:2804–2810

    Article  PubMed  CAS  Google Scholar 

  • Porter JW, Muscatine L, Dubinsky Z, Falkowski P (1984) Primary production and photoadaptation in light- and shade- adapted colonies of the symbiotic coral, Stylophora pistallata. Proc R Soc Lond 222:161–180

    Google Scholar 

  • Rodriguez-Lanetty M, Phillips WS, Weis VM (2006a) Transcriptome analysis of a cnidarian—dinoflagellate mutualism reveals complex modulation of host gene expression. BMC Genomics 7:23

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Lanetty M, Wood-Charlson EM, Hollingsworth LL, Krupp DA, Weis VM (2006b) Temporal and spatial infection dynamics indicate recognition events in the early hours of a dinoflagellate/coral symbiosis. Mar Biol 149:713–719

    Article  Google Scholar 

  • Sawyer SJ, Muscatine L (2001) Cellular mechanisms underlying temperature-induced bleaching in the tropical sea anemone Aiptasia pulchella. J Exp Biol 204:3443–3456

    PubMed  CAS  Google Scholar 

  • Schwarz JA, Brokstein P, Manohar C, Coffroth MA, Szmant A, Medina MA (2006) Coral reef genomics: developing tools for functional genomics of coral symbiosis. Proc 10th Int Coral Reef Symp 1:274–281

    Google Scholar 

  • Smith GJ, Muscatine L (1986) Carbon budgets and regulation of the population-density of symbiotic algae. Endocytobiosis and Cell Research 3:213–238

    Google Scholar 

  • Smith GJ, Muscatine L (1999) Cell cycle of symbiotic dinoflagellates: variation in G1 phase-duration with anemone nutrient status and macronutrient supply in the Aiptasia puchella-Symbiodinium pulchrorum symbiosis. Mar Biol 134:405–418

    Article  Google Scholar 

  • Smith D, Muscatine L, Lewis D (1969) Carbohydrate movement from autotrophs to heterotrophs in parasitic and mutualistic symbiosis. Biol Rev 44:17–90

    PubMed  CAS  Google Scholar 

  • Stat M, Carter D, Hoegh-Guldberg O (2006) The evolutionary history of Symbiodinium and Scleractinian hosts—symbiosis, diversity, and the effect of climate change. Perspect Plant Ecol Evol Syst 8:23–43

    Article  Google Scholar 

  • Steen RG, Muscatine L (1987) Low temperature evokes rapid exocytosis of symbiotic algae by a sea anemone. Biol Bull 172:246–263

    Article  Google Scholar 

  • Trench RK (1971a) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates I the assimilation of photosynthetic products of zooxanthellae by two marine coelenterates. Proc Roy Soc Lond B 177:225–235

    CAS  Google Scholar 

  • Trench RK (1971b) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates II liberation of fixed 14C by zooxanthellae in vitro. Proc R Soc Lond B 177:237–250

    CAS  Google Scholar 

  • Trench RK (1971c) The physiology and biochemistry of zooxanthellae symbiotic with marine coelenterates III the effect of homogenates of host tissues on the excretion of photosynthetic products in vitro by zooxanthellae from two marine coelenterates. Proc R Soc Lond B 177:251–264

    CAS  Google Scholar 

  • Vandermeulen JH (1972) Studies on the skeleton formation, tissue ultrastructure, and physiology of calcification in the reef coral Pocillopora damicornis. Ph.D. thesis, University of California, Los Angeles, p 248

  • Vandermeulen JH, Muscatine L (1974) Influence of symbiotic algae on calcification in reef corals: critique and progress report. In: Vernberg WB (ed) Symbiosis in the sea. University of South Carolina Press, Columbia, pp 1–19

    Google Scholar 

  • Vandermeulen JH, Muscatine L, Davis ND (1972) Effect of inhibitors of photosynthesis on zooxanthellae in corals and other marine invertebrates. Mar Biol 16:185–191

    Google Scholar 

  • Weis VM, Reynolds WS, deBoer Krupp DA (2001) Host-symbiont specificity during onset of symbiosis between the dinoflagellates Symbiodinium spp. and planula larvae of the scleractinian coral. Fungia scutaria. Coral Reefs 20:310–308

    Article  Google Scholar 

  • Wilkerson FP, Muscatine L (1984) Uptake and assimilation of dissolved inorganic nitrogen by a symbiotic sea anemone. Proc R Soc Lond B 221:71–86

    CAS  Google Scholar 

  • Wilkerson FP, Muller Parker G, Muscatine L (1983) Temporal patterns of cell division in natural populations of endosymbiotic algae. Limnol Oceanogr 28:1009–1014

    Google Scholar 

  • Wilkerson FP, Kobayashi D, Muscatine L (1988) Mitotic index and size of symbiotic algae in Caribbean reef corals. Coral Reefs 7:29–36

    Article  Google Scholar 

  • Young SD (1969) Studies on the skeletal organic material in hermatypic corals with emphasis on Pocillopora damicornis. Ph.D. thesis, University of California, Los Angeles, p 114

  • Young SD, O’Connor JD, Muscatine L (1971) Organic material from scleractinian coral skeletons 2 incorporation of C-14 into protein, chitin and lipid. Comp Biochem Physiol 40:945–958

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Hoegh-Guldberg.

Additional information

Communicated by Editor in chief B.E. Brown.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoegh-Guldberg, O., Muller-Parker, G., Cook, C.B. et al. Len Muscatine (1932–2007) and his contributions to the understanding of algal-invertebrate endosymbiosis. Coral Reefs 26, 731–739 (2007). https://doi.org/10.1007/s00338-007-0320-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-007-0320-0

Keywords

Navigation