Skip to main content

Advertisement

Log in

Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m−2 s−1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Aguirre J (1998) Bioconstrucciones de Saccostrea cuccullata Born, 1778 en el Plioceno superior de Cadiz (SO de España): implicaciones paleoambientales y paleoclimaticas. Rev Esp Paleontol 13:27–36

    Google Scholar 

  • Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354

    CAS  Google Scholar 

  • Allemand D, Tambutté E, Girard JP, Jaubert J (1998) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J Exp Biol 201:2001–2009

    PubMed  CAS  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  PubMed  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (eds) Ecosystems of the world, vol 25, coral reefs. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Bavestrello G, Puce S, Cerrano C, Zocchi E, Boero N (2006) The problem of seasonality of benthic hydroids in temperate waters. Chem Ecol 22s:197–205

    Article  CAS  Google Scholar 

  • Bitar G, Zibrowius H (1997) Scleractinian corals from Lebanon, eastern Mediterranean, including a non-lessepsian invading species (Cnidaria: Scleractinian). Sci Mar 61:227–231

    Google Scholar 

  • Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225

    Google Scholar 

  • Carricart-Garnivet JP (2004) Sea surface temperature and the growth of the west Atlantic reef building coral Montastrea annularis. J Exp Mar Biol Ecol 302:249–260

    Article  Google Scholar 

  • Chalker BE, Taylor DL (1975) Light-enhanced calcification and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B 190:323–331

    Article  PubMed  CAS  Google Scholar 

  • Clausen CD, Roth AA (1975) Effect of temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100

    Article  Google Scholar 

  • Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM Zabala M (2000) Seasonality of in situ respiration rate in three temperate benthic suspension feeders. Limnol Oceanogr 47:324–331

    Article  Google Scholar 

  • Coma R, Ribes M, Gili JM, Zabala M (2002) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453

    Article  Google Scholar 

  • Cuif JP, Dauphin Y, Gautret P (1997) Biomineralization features in scleractinian coral skeletons source of new taxonomic criteria. Bol R Soc Esp Hist Secc Geol 92:129–141

    Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • Dubinsky Z, Stambler N (1996) Marine pollution and coral reefs. Global Change Biol 2:511–526

    Article  Google Scholar 

  • Dubinsky Z, Stambler N, Ben-Zion M, McCloskey LR, Muscatine L, Falkowsky PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B 239:231–246

    Google Scholar 

  • Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60:55–64

    Google Scholar 

  • Fadlallah YH (1982) Reproductive ecology of the coral Astrangia lajollaensis: sexual and asexual patterns in a kelp forest habitat. Oecologia 55:379–388

    Article  Google Scholar 

  • Ferrier-Pagès C, Witting J, Tambutté E, Sebens K (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240

    Article  Google Scholar 

  • Fornos JJ, Baron A, Pons GX (1996) Arrecifes de corales hermatípicos (Cladocora caespitosa) en el relleno holoceno de la zona de Es Grau (Menorca Mediterraneo Occidental). Geogaceta 20:303–306

    Google Scholar 

  • Gateño D, Rinkevich B (2003) Coral polyp budding is probably promoted by a canalized ratio of two morphometric fields. Mar Biol 142:971–973

    Google Scholar 

  • Gilmour JP (2002) Acute sedimentation causes size-specific mortality and asexual budding in the mushroom coral, Fungia fungites. Mar Freshw Res 53:805–812

    Article  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuringthe rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals: II. Calcium deposition by hermatypic corals under different conditions. Biol Bull 117:239–250

    Article  CAS  Google Scholar 

  • Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967

    Article  CAS  Google Scholar 

  • Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189

    Article  PubMed  CAS  Google Scholar 

  • Hidaka M, Shirasaka S (1992) Mechanism of phototropism in young corallites of the coral Galaxea fascicularis (L.). J Exp Mar Biol Ecol 157:69–77

    Article  Google Scholar 

  • Hoegh-Guldberg O (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35:415–425

    Google Scholar 

  • Hoegh-Guldberg O, Smith GJ (1989) The influence of the population density of zooxanthellae and supply f ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix (Dana 1846) and Stylophora pistillata (Esper 1797). Mar Ecol Prog Ser 57:173–186

    Article  CAS  Google Scholar 

  • Houlbreque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the Scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166

    Article  Google Scholar 

  • Houlbreque F, Tambutté E, Allemand D, Ferrier-Pagès C (2004a) Interaction between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469

    Article  PubMed  Google Scholar 

  • Houlbreque F, Tambutté E, Richard C, Ferrier-Pagès C (2004b) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160

    Article  Google Scholar 

  • Howe SA, Marshall AT (2001) Thermal compensation of metabolism in the temperate coral, Plesiastrea versipora (Lamarck, 1816). J Exp Mar Biol Ecol 259:231–248

    Article  PubMed  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • Ip YK, Lim ALL, Lim RWL (1991) Some properties of calcium-activated adenosine triphsphatase from hermatypic coral Galaxea fascicularis. Mar Biol 111:191–197

    Article  CAS  Google Scholar 

  • Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae: II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148

    Article  CAS  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194

    CAS  Google Scholar 

  • Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–203

    Article  Google Scholar 

  • Kevin KM, Hudson RCL (1979) The role of zooxanthellae in the hermatypic coral Plesiastrea urvillei (Milne Edwards and Haime) from cold waters. J Exp Mar Biol Ecol 36:157–170

    Article  Google Scholar 

  • Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536–536

    Article  Google Scholar 

  • Lasker HR, Gottfriend MD, Coffroth MA (1983) Effects of depth on feeding capabilities of two octocorals. Mar Biol 73:73–78

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1990) Possible relationships between environmental variables and skeletal density in a coral colony from the central great barrier reef. J Exp Mar Biol Ecol 134:221–241

    Article  Google Scholar 

  • Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral porites. J Exp Mar Biol Ecol 245:225–243

    Article  PubMed  Google Scholar 

  • Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224

    Google Scholar 

  • Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth and heterotrophy. Mar Ecol Prog Ser 122:217–225

    Article  Google Scholar 

  • Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (∼weekly) trace element systematics. Quaternary Sci Rev 26:441–462

    Article  Google Scholar 

  • Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). Biologia Marina Mediterranea 1:371-372

    Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89

    Article  Google Scholar 

  • Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107

    Article  Google Scholar 

  • Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Memorie Descrittive Carta Geologica d’Italia 52(1994):59–74

    Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN Aguirre J Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean Cladocora caespitosa: a proxy for past climate fluctuations? Global Planet Change 40:195–200

    Article  Google Scholar 

  • Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calyx growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409

    Article  Google Scholar 

  • Piniak GA (2002) Effects of symbiotic status, flow speed, and prey type on prey capture by the facultatively symbiotic temperate coral Oculina arbuscula. Mar Biol 141:449–455

    Article  Google Scholar 

  • Ribes M, Coma R, Gili JM (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pagès C (2006a) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006b) Growth and photosynthesis of two Mediterranean corals Cladocora caespitosa and Oculina patagonica under normal and elevated temperatures. J Exp Biol 209:4546–4556

    Article  PubMed  Google Scholar 

  • Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L) (Favidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and biometry. PSZNI Mar Ecol 14:205–219

    Google Scholar 

  • Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (L) (Favidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. Energy budget. PSZNI Mar Ecol 14:221–238

    Google Scholar 

  • Schuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9

    Article  Google Scholar 

  • Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic records in a non-tropical coral (Cladocora caespitosa) from the Mediterranean Sea: evidence of a new high-resolution climate archive. Global Planet Change 49:94–120

    Article  Google Scholar 

  • Szmant-Froelich A, Pilson MEQ (1984) Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar Biol 81:153–162

    Article  CAS  Google Scholar 

  • Titlyanov EA, Bil’ K, Fomina L, Titlyanova T, Leletkin V, Eden N, Malkin A, Dubinsky Z (2000a) Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Mar Biol 137:463–472

    Article  CAS  Google Scholar 

  • Titlyanov EA, Tsukahara J, Titlyanova TV, Leletkin VA, van Woesik R, Yamazato K (2000b) Zooxanthellae population density and physiological state of the coral Stylophora pistillata during starvation and osmotic shock. Symbiosis 28:303–322

    Google Scholar 

  • Titlyanov EA, Titlyanov TV, Yamazato K (2001a) Formation, growth and photo-acclimation of colonies of the hermatypic coral Galaxea fascicularis under different light conditions. Symbiosis 30:257–274

    Google Scholar 

  • Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001b) Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J Exp Mar Biol Ecol 257:163–181

    Article  PubMed  Google Scholar 

  • Wellington GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320

    Article  Google Scholar 

  • Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284

    Google Scholar 

Download references

Acknowledgments

Financial support for this project was provided both by the Marine Environmental Research Centre (La Spezia, Italy) and by the Centre Scientifique de Monaco (Monaco). Facilities were provided by Drs R. Delfanti and S. Cocito during the experiment. We thank two anonymous reviewers for their valuable suggestions that greatly improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rodolfo-Metalpa.

Additional information

Communicated by Biology Editor M. P. Lesser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodolfo-Metalpa, R., Peirano, A., Houlbrèque, F. et al. Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa . Coral Reefs 27, 17–25 (2008). https://doi.org/10.1007/s00338-007-0283-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-007-0283-1

Keywords

Navigation