Coral Reefs

, Volume 27, Issue 1, pp 17–25 | Cite as

Effects of temperature, light and heterotrophy on the growth rate and budding of the temperate coral Cladocora caespitosa

  • R. Rodolfo-MetalpaEmail author
  • A. Peirano
  • F. Houlbrèque
  • M. Abbate
  • C. Ferrier-Pagès


Recent investigations have shown the temperate scleractinian coral Cladocora caespitosa to be a new potential climate archive for the Mediterranean Sea. Whilst earlier studies have demonstrated a seasonal variation in growth rates, they were unable to distinguish which environmental parameter (light, temperature, or food) was influencing growth. In this study, the effect of these three factors on the coral physiology and calcification rate was characterized to aid the correct interpretation of skeletal trace element variations. Two temperatures (13 and 23°C), irradiances (50 and 120 μmol m−2 s−1), and feeding regimes (unfed and fed with nauplii of Artemia salina) were tested under controlled laboratory conditions on the growth, zooxanthellae density, chlorophyll (chl) content, and asexual reproduction (budding) of C. caespitosa during a 7-week factorial experiment. Unlike irradiance, which had no effect, high temperature and food supply increased the growth rates of C. caespitosa. The effect of feeding was however higher for corals maintained at low temperature, suggesting that heterotrophy is especially important during the cold season, and that temperature is the predominant factor affecting the coral’s growth. At low temperature, fed samples had higher zooxanthellae density and chl content, possibly for maximizing photosynthetic efficiency. Sexual reproduction investment of C. caespitosa was higher during favourable conditions characterised by high temperatures and zooplankton availability.


Mediterranean corals Growth Temperature Light Feeding Asexual reproduction 



Financial support for this project was provided both by the Marine Environmental Research Centre (La Spezia, Italy) and by the Centre Scientifique de Monaco (Monaco). Facilities were provided by Drs R. Delfanti and S. Cocito during the experiment. We thank two anonymous reviewers for their valuable suggestions that greatly improved our manuscript.


  1. Aguirre J (1998) Bioconstrucciones de Saccostrea cuccullata Born, 1778 en el Plioceno superior de Cadiz (SO de España): implicaciones paleoambientales y paleoclimaticas. Rev Esp Paleontol 13:27–36Google Scholar
  2. Al-Horani FA (2005) Effects of changing seawater temperature on photosynthesis and calcification in the scleractinian coral Galaxea fascicularis, measured with O2, Ca2+ and pH microsensors. Sci Mar 69:347–354Google Scholar
  3. Allemand D, Tambutté E, Girard JP, Jaubert J (1998) Organic matrix synthesis in the scleractinian coral Stylophora pistillata: role in biomineralization and potential target of the organotin tributyltin. J Exp Biol 201:2001–2009PubMedGoogle Scholar
  4. Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253PubMedCrossRefGoogle Scholar
  5. Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (eds) Ecosystems of the world, vol 25, coral reefs. Elsevier, Amsterdam, pp 109–131Google Scholar
  6. Bavestrello G, Puce S, Cerrano C, Zocchi E, Boero N (2006) The problem of seasonality of benthic hydroids in temperate waters. Chem Ecol 22s:197–205CrossRefGoogle Scholar
  7. Bitar G, Zibrowius H (1997) Scleractinian corals from Lebanon, eastern Mediterranean, including a non-lessepsian invading species (Cnidaria: Scleractinian). Sci Mar 61:227–231Google Scholar
  8. Buddemeier RW, Kinzie RA (1976) Coral growth. Oceanogr Mar Biol Annu Rev 14:183–225Google Scholar
  9. Carricart-Garnivet JP (2004) Sea surface temperature and the growth of the west Atlantic reef building coral Montastrea annularis. J Exp Mar Biol Ecol 302:249–260CrossRefGoogle Scholar
  10. Chalker BE, Taylor DL (1975) Light-enhanced calcification and the role of oxidative phosphorylation in calcification of the coral Acropora cervicornis. Proc R Soc Lond B 190:323–331PubMedCrossRefGoogle Scholar
  11. Clausen CD, Roth AA (1975) Effect of temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Mar Biol 33:93–100CrossRefGoogle Scholar
  12. Coles SL, Jokiel PL (1978) Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Mar Biol 49:187–195CrossRefGoogle Scholar
  13. Coma R, Ribes M, Gili JM Zabala M (2000) Seasonality of in situ respiration rate in three temperate benthic suspension feeders. Limnol Oceanogr 47:324–331CrossRefGoogle Scholar
  14. Coma R, Ribes M, Gili JM, Zabala M (2002) Seasonality in coastal benthic ecosystems. Trends Ecol Evol 15:448–453CrossRefGoogle Scholar
  15. Cuif JP, Dauphin Y, Gautret P (1997) Biomineralization features in scleractinian coral skeletons source of new taxonomic criteria. Bol R Soc Esp Hist Secc Geol 92:129–141Google Scholar
  16. Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395CrossRefGoogle Scholar
  17. Dubinsky Z, Stambler N (1996) Marine pollution and coral reefs. Global Change Biol 2:511–526CrossRefGoogle Scholar
  18. Dubinsky Z, Stambler N, Ben-Zion M, McCloskey LR, Muscatine L, Falkowsky PG (1990) The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc R Soc Lond B 239:231–246Google Scholar
  19. Estrada M (1996) Primary production in the northwestern Mediterranean. Sci Mar 60:55–64Google Scholar
  20. Fadlallah YH (1982) Reproductive ecology of the coral Astrangia lajollaensis: sexual and asexual patterns in a kelp forest habitat. Oecologia 55:379–388CrossRefGoogle Scholar
  21. Ferrier-Pagès C, Witting J, Tambutté E, Sebens K (2003) Effect of natural zooplankton feeding on the tissue and skeletal growth of the scleractinian coral Stylophora pistillata. Coral Reefs 22:229–240CrossRefGoogle Scholar
  22. Fornos JJ, Baron A, Pons GX (1996) Arrecifes de corales hermatípicos (Cladocora caespitosa) en el relleno holoceno de la zona de Es Grau (Menorca Mediterraneo Occidental). Geogaceta 20:303–306Google Scholar
  23. Gateño D, Rinkevich B (2003) Coral polyp budding is probably promoted by a canalized ratio of two morphometric fields. Mar Biol 142:971–973Google Scholar
  24. Gilmour JP (2002) Acute sedimentation causes size-specific mortality and asexual budding in the mushroom coral, Fungia fungites. Mar Freshw Res 53:805–812CrossRefGoogle Scholar
  25. Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuringthe rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75CrossRefGoogle Scholar
  26. Goreau TF, Goreau NI (1959) The physiology of skeleton formation in corals: II. Calcium deposition by hermatypic corals under different conditions. Biol Bull 117:239–250CrossRefGoogle Scholar
  27. Grottoli AG (2002) Effect of light and brine shrimp on skeletal δ13C in the Hawaiian coral Porites compressa: a tank experiment. Geochim Cosmochim Acta 66:1955–1967CrossRefGoogle Scholar
  28. Grottoli AG, Rodrigues LJ, Palardy JE (2006) Heterotrophic plasticity and resilience in bleached corals. Nature 440:1186–1189PubMedCrossRefGoogle Scholar
  29. Hidaka M, Shirasaka S (1992) Mechanism of phototropism in young corallites of the coral Galaxea fascicularis (L.). J Exp Mar Biol Ecol 157:69–77CrossRefGoogle Scholar
  30. Hoegh-Guldberg O (1995) Temperature, food availability, and the development of marine invertebrate larvae. Am Zool 35:415–425Google Scholar
  31. Hoegh-Guldberg O, Smith GJ (1989) The influence of the population density of zooxanthellae and supply f ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix (Dana 1846) and Stylophora pistillata (Esper 1797). Mar Ecol Prog Ser 57:173–186CrossRefGoogle Scholar
  32. Houlbreque F, Tambutté E, Ferrier-Pagès C (2003) Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the Scleractinian coral Stylophora pistillata. J Exp Mar Biol Ecol 296:145–166CrossRefGoogle Scholar
  33. Houlbreque F, Tambutté E, Allemand D, Ferrier-Pagès C (2004a) Interaction between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol 207:1461–1469PubMedCrossRefGoogle Scholar
  34. Houlbreque F, Tambutté E, Richard C, Ferrier-Pagès C (2004b) Importance of a micro-diet for scleractinian corals. Mar Ecol Prog Ser 282:151–160CrossRefGoogle Scholar
  35. Howe SA, Marshall AT (2001) Thermal compensation of metabolism in the temperate coral, Plesiastrea versipora (Lamarck, 1816). J Exp Mar Biol Ecol 259:231–248PubMedCrossRefGoogle Scholar
  36. Howe SA, Marshall AT (2002) Temperature effects on calcification rate and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81CrossRefGoogle Scholar
  37. Ip YK, Lim ALL, Lim RWL (1991) Some properties of calcium-activated adenosine triphsphatase from hermatypic coral Galaxea fascicularis. Mar Biol 111:191–197CrossRefGoogle Scholar
  38. Jacques TG, Marshall N, Pilson MEQ (1983) Experimental ecology of the temperate scleractinian coral Astrangia danae: II. Effect of temperature, light intensity and symbiosis with zooxanthellae on metabolic rate and calcification. Mar Biol 76:135–148CrossRefGoogle Scholar
  39. Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c 1and c 2in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz 167:191–194Google Scholar
  40. Jokiel PL, Coles SL (1977) Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar Biol 43:201–203CrossRefGoogle Scholar
  41. Kevin KM, Hudson RCL (1979) The role of zooxanthellae in the hermatypic coral Plesiastrea urvillei (Milne Edwards and Haime) from cold waters. J Exp Mar Biol Ecol 36:157–170CrossRefGoogle Scholar
  42. Kružić P, Požar-Domac A (2003) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22:536–536CrossRefGoogle Scholar
  43. Lasker HR, Gottfriend MD, Coffroth MA (1983) Effects of depth on feeding capabilities of two octocorals. Mar Biol 73:73–78CrossRefGoogle Scholar
  44. Lough JM, Barnes DJ (1990) Possible relationships between environmental variables and skeletal density in a coral colony from the central great barrier reef. J Exp Mar Biol Ecol 134:221–241CrossRefGoogle Scholar
  45. Lough JM, Barnes DJ (2000) Environmental controls on growth of the massive coral porites. J Exp Mar Biol Ecol 245:225–243PubMedCrossRefGoogle Scholar
  46. Marshall AT, Clode P (2004) Calcification rate and the effect of temperature in a zooxanthellate and azooxanthellate scleractinian reef coral. Coral Reefs 23:218–224Google Scholar
  47. Miller MW (1995) Growth of a temperate coral: effects of temperature, light, depth and heterotrophy. Mar Ecol Prog Ser 122:217–225CrossRefGoogle Scholar
  48. Montagna P, McCulloch M, Mazzoli C, Silenzi S, Odorico R (2007) The non-tropical coral Cladocora caespitosa as the new climate archive for the Mediterranean: high-resolution (∼weekly) trace element systematics. Quaternary Sci Rev 26:441–462CrossRefGoogle Scholar
  49. Morri C, Peirano A, Bianchi CN, Sassarini M (1994) Present-day bioconstructions of the hard coral, Cladocora caespitosa (L.) (Anthozoa, Scleractinia), in the eastern Ligurian Sea (NW Mediterranean). Biologia Marina Mediterranea 1:371-372Google Scholar
  50. Palardy JE, Grottoli AG, Matthews KA (2005) Effects of upwelling, depth, morphology and polyp size on feeding in three species of Panamanian corals. Mar Ecol Prog Ser 300:79–89CrossRefGoogle Scholar
  51. Palardy JE, Grottoli AG, Matthews KA (2006) Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. J Exp Mar Biol Ecol 331:99–107CrossRefGoogle Scholar
  52. Peirano A, Morri C, Mastronuzzi G, Bianchi CN (1998) The coral Cladocora caespitosa (Anthozoa, Scleractinia) as a bioherm builder in the Mediterranean Sea. Memorie Descrittive Carta Geologica d’Italia 52(1994):59–74Google Scholar
  53. Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the temperate, zooxanthellate scleractinian Cladocora caespitosa from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201CrossRefGoogle Scholar
  54. Peirano A, Morri C, Bianchi CN Aguirre J Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orrù P (2004) The Mediterranean Cladocora caespitosa: a proxy for past climate fluctuations? Global Planet Change 40:195–200CrossRefGoogle Scholar
  55. Peirano A, Abbate M, Cerrati G, Difesca V, Peroni C, Rodolfo-Metalpa R (2005) Monthly variations in calyx growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24:404–409CrossRefGoogle Scholar
  56. Piniak GA (2002) Effects of symbiotic status, flow speed, and prey type on prey capture by the facultatively symbiotic temperate coral Oculina arbuscula. Mar Biol 141:449–455CrossRefGoogle Scholar
  57. Ribes M, Coma R, Gili JM (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137CrossRefGoogle Scholar
  58. Rodolfo-Metalpa R, Richard C, Allemand D, Bianchi CN, Morri C, Ferrier-Pagès C (2006a) Response of zooxanthellae in symbiosis with the Mediterranean corals Cladocora caespitosa and Oculina patagonica to elevated temperatures. Mar Biol 150:45–55CrossRefGoogle Scholar
  59. Rodolfo-Metalpa R, Richard C, Allemand D, Ferrier-Pagès C (2006b) Growth and photosynthesis of two Mediterranean corals Cladocora caespitosa and Oculina patagonica under normal and elevated temperatures. J Exp Biol 209:4546–4556PubMedCrossRefGoogle Scholar
  60. Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L) (Favidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and biometry. PSZNI Mar Ecol 14:205–219Google Scholar
  61. Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (L) (Favidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. Energy budget. PSZNI Mar Ecol 14:221–238Google Scholar
  62. Schuhmacher H, Zibrowius H (1985) What is hermatypic? A redefinition of ecological groups in corals and other organisms. Coral Reefs 4:1–9CrossRefGoogle Scholar
  63. Silenzi S, Bard E, Montagna P, Antonioli F (2005) Isotopic records in a non-tropical coral (Cladocora caespitosa) from the Mediterranean Sea: evidence of a new high-resolution climate archive. Global Planet Change 49:94–120CrossRefGoogle Scholar
  64. Szmant-Froelich A, Pilson MEQ (1984) Effects of feeding frequency and symbiosis with zooxanthellae on nitrogen metabolism and respiration of the coral Astrangia danae. Mar Biol 81:153–162CrossRefGoogle Scholar
  65. Titlyanov EA, Bil’ K, Fomina L, Titlyanova T, Leletkin V, Eden N, Malkin A, Dubinsky Z (2000a) Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Mar Biol 137:463–472CrossRefGoogle Scholar
  66. Titlyanov EA, Tsukahara J, Titlyanova TV, Leletkin VA, van Woesik R, Yamazato K (2000b) Zooxanthellae population density and physiological state of the coral Stylophora pistillata during starvation and osmotic shock. Symbiosis 28:303–322Google Scholar
  67. Titlyanov EA, Titlyanov TV, Yamazato K (2001a) Formation, growth and photo-acclimation of colonies of the hermatypic coral Galaxea fascicularis under different light conditions. Symbiosis 30:257–274Google Scholar
  68. Titlyanov EA, Titlyanova TV, Yamazato K, van Woesik R (2001b) Photo-acclimation of the hermatypic coral Stylophora pistillata while subjected to either starvation or food provisioning. J Exp Mar Biol Ecol 257:163–181PubMedCrossRefGoogle Scholar
  69. Wellington GM (1982) An experimental analysis of the effects of light and zooplankton on coral zonation. Oecologia 52:311–320CrossRefGoogle Scholar
  70. Zibrowius H (1980) Les Scléractiniaires de la Méditerranée et de l’Atlantique nord-oriental. Mem Inst Oceanogr (Monaco) 11:1–284Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • R. Rodolfo-Metalpa
    • 1
    Email author
  • A. Peirano
    • 2
  • F. Houlbrèque
    • 3
  • M. Abbate
    • 2
  • C. Ferrier-Pagès
    • 1
  1. 1.Centre Scientifique de MonacoPrincipality of MonacoMonaco
  2. 2.Marine Environmental Research CentreENEA Santa TeresaLa SpeziaItaly
  3. 3.Geological and Environmental SciencesStanford UniversityStanfordUSA

Personalised recommendations