Skip to main content
Log in

DNA barcoding as a tool for coral reef conservation

  • Review
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

DNA Barcoding (DBC) is a method for taxonomic identification of animals that is based entirely on the 5′ portion of the mitochondrial gene, cytochrome oxidase subunit I (COI-5). It can be especially useful for identification of larval forms or incomplete specimens lacking diagnostic morphological characters. DBC can also facilitate the discovery of species and in defining “molecular taxonomic units” in problematic groups. However, DBC is not a panacea for coral reef taxonomy. In two of the most ecologically important groups on coral reefs, the Anthozoa and Porifera, COI-5 sequences have diverged too little to be diagnostic for all species. Other problems for DBC include paraphyly in mitochondrial gene trees and lack of differentiation between hybrids and their maternal ancestors. DBC also depends on the availability of databases of COI-5 sequences, which are still in early stages of development. A global effort to barcode all fish species has demonstrated the importance of large-scale coordination and is yielding promising results. Whether or not COI-5 by itself is sufficient for species assignments has become a contentious question; it is generally advantageous to use sequences from multiple loci.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Angelov S, Harb B, Kannan S, Khanna S, Kim J, Wang LS (2004) Genome identification and classification by short oligo arrays. In: Jonassen I, Kim J (eds) Algorithms in Bioinformatics, 4th International Workshop, WABI 2004, Bergen, Norway, September 17–21, 2004, Proceedings. Lecture Notes in Computer Science Vol 3240. Springer, Berlin, pp 400–411

  • Avise JC (1994) Molecular markers, natural history and evolution. Chapman and Hall, New York

    Google Scholar 

  • Avise JC, Ball RM (1990) Principles of genealogical concordance in species concepts and biological taxonomy. Oxf Surv Evol Biol 7:45–67

    Google Scholar 

  • Baldwin BS, Black M, Sanjur O, Gustafson R, Lutz RA, Vrijenhoek RC (1996) A diagnostic molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring bivalves: Mitochondrial COI. Mol Mar Biol Biotechnol 5:9–14

    Google Scholar 

  • Barber P, Boyce SL (2006) Estimating diversity of Indo-Pacific coral reef stomatopods through DNA barcoding of stomatopod larvae. Proc R Soc Lond B Biol Sci 273:2053–2061

    Article  Google Scholar 

  • Bellwood DR, Hughes TP, Folke C, Nystrom M (2004) Confronting the coral reef crisis. Nature 429:827–833

    Article  Google Scholar 

  • Bhadury P, Austen MC, Bilton DT, Lambshead PJD, Rogers AD, Smerdon GR (2006) Development and evaluation of a DNA-barcoding approach for the rapid identification of nematodes. Mar Ecol Prog Ser 320:1–9

    Article  Google Scholar 

  • Bilodeau AL, Lankford WS, Kim TJ, Felder DL, Neigel JE (1999) An ultrasensitive method for detection of single crab larvae (Sesarma reticulatum) using PCR amplification of a highly repetitive DNA sequence. Mol Ecol 8:683–684

    Article  Google Scholar 

  • Blaxter ML (2004) The promise of a DNA taxonomy. Proc R Soc Lond B Biol Sci 359:669–679

    Article  Google Scholar 

  • Blaxter M, Mann J, Chapman T, Thomas F, Whitton C, Floyd R, Abebe E (2005) Defining operational taxonomic units using DNA barcode data. Proc R Soc Lond B Biol Sci 360:1935–1943

    Article  Google Scholar 

  • Borneman J (2001) Probe selection algorithms with applications in the analysis of microbial communities. Bioinformatics 17:1–9

    Article  Google Scholar 

  • Brower AVZ (2006) Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera : Hesperiidae). Systematics and Biodiversity 4:127–132

    Article  Google Scholar 

  • Caley MJ, Carr MH, Hixon MA, Hughes TP, Jones GP, Menge BA (1996) Recruitment and the local dynamics of open marine populations. Annu Rev Ecol Syst 27:477–500

    Article  Google Scholar 

  • Call DR (2005) Challenges and opportunities for pathogen detection using DNA microarrays. Crit Rev Microbiol 31:91–99

    Article  Google Scholar 

  • Cognato AI (2006) Standard percent DNA sequence difference for insects does not predict species boundaries. J Econ Entomol 99:1037–1045

    Article  Google Scholar 

  • Collins LS, Budd AF, Coates AG (1996) Earliest evolution associated with closure of the Tropical American Seaway. Proc Natl Acad Sci USA 93:6069–6072

    Article  Google Scholar 

  • Cote IM, Gill JA, Gardner TA, Watkinson AR (2005) Measuring coral reef decline through meta-analyses. Proc R Soc Lond B Biol Sci 360:385–395

    Article  Google Scholar 

  • Cowen RK, Paris CB, Srinivasan A (2006) Scaling of connectivity in marine populations. Science 311:522–527

    Article  Google Scholar 

  • DeLong EE (2005) Microbial community genomics in the ocean. Nat Rev Microbiol 3:459–469

    Article  Google Scholar 

  • Edwards RA, Rodriguez-Brito B, Wegley L, Haynes M, Breitbart M, Peterson DM, Saar MO, Alexander S, Alexander EC, Rohwer F (2006) Using pyrosequencing to shed light on deep mine microbial ecology. BMC Genomics 7:57

    Article  Google Scholar 

  • Erpenbeck D, Hooper JNA, Worheide G (2006) CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Mol Ecol Notes 6:550–553

    Article  Google Scholar 

  • Floyd R, Abebe E, Papert A, Blaxter M (2002) Molecular barcodes for soil nematode identification. Mol Ecol 11:839–850

    Article  Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotechnol 3:294–299

    Google Scholar 

  • Froese R, Pauly D (2000) FishBase 2000: concepts, design and data sources. ICLARM, Los Baños

    Google Scholar 

  • Funk DJ, Omland KE (2003) Species-level paraphyly and polyphyly: Frequency, causes, and consequences with insights from animal mitochondrial DNA. Annual Review of Ecology, Evolution and Systematics 34:397–423

    Article  Google Scholar 

  • Gaines SD, Gaylord B, Largier JL (2003) Avoiding current oversights in marine reserve design. Ecol Appl 13:S32–S46

    Article  Google Scholar 

  • Gardner TA, Cote IM, Gill JA, Grant A, Watkinson AR (2003) Long-term region-wide declines in Caribbean corals. Science 301:958–960

    Article  Google Scholar 

  • Gaylord B, Gaines SD, Siegel DA, Carr MH (2005) Marine reserves exploit population structure and life history in potentially improving fisheries yields. Ecol Appl 15:2180–2191

    Article  Google Scholar 

  • Georgiev GP, Kramerov DA, Ryskov AP, Skryabin KG, Lukanidin EM (1982) Dispersed repetitive sequences in eukaryotic genomes and their possible biological significance. Cold Spring Harbor Symp Quant Biol 47:1109–1121

    Google Scholar 

  • Goffredi SK, Jones WJ, Scholin CA, Marin R, Vrijenhoek RC (2006) Molecular detection of marine invertebrate larvae. Mar Biotechnol 8:149–160

    Article  Google Scholar 

  • Gómez A, Wright PJ, Lunt DH, Cancino JM, Carvalho GR, Hughes RN (2007) Mating trials validate the use of DNA barcoding to reveal cryptic speciation of a marine bryozoan taxon. Proc R Soc Lond B Biol Sci 274:199–207

    Article  Google Scholar 

  • Govindarajan AF, Halanych KK, Cunningham CW (2005) Mitochondrial evolution and phylogeography in the hydrozoan Obelia geniculata (Cnidaria). Mar Biol 146:213–222

    Article  Google Scholar 

  • Grantham BA, Eckert GL, Shanks AL (2003) Dispersal potential of marine invertebrates in diverse habitats. Ecol Appl 13:S108–S116

    Article  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PDN (2006) DNA barcodes distinguish species of tropical Lepidoptera. Proc Natl Acad Sci USA 103:968–971

    Article  Google Scholar 

  • Hanner R (2005) Proposed Standards for BARCODE Records in INSSC (BRIs) Database Working Group, Consortium for the Barcode of Life, http://www.barcoding.si.edu/

  • Hare MP, Palumbi SR, Butman CA (2000) Single-step species identification of bivalve larvae using multiplex polymerase chain reaction. Mar Biol 137:953–961

    Article  Google Scholar 

  • Hebert PDN, Ratnasingham S, deWaard JR (2003a) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B Biol Sci 270:S96–S99

    Article  Google Scholar 

  • Hebert PDN, Cywinska A, Ball SL, deWaard JR (2003b) Biological identifications through DNA barcodes. Proc R Soc Lond B Biol Sci 270:313–321

    Article  Google Scholar 

  • Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM (2004a) Identification of birds through DNA barcodes. PLoS Biology 2:1657–1663

    Article  Google Scholar 

  • Hebert PDN, Penton EH, Burns JM, Janzen DH, Hallwachs W (2004b) Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proc Natl Acad Sci USA 101:14812–14817

    Article  Google Scholar 

  • Heid CA, Stevens J, Livak KJ, Williams PM (1996) Real time quantitative PCR. Genome Res 6:986–994

    Article  Google Scholar 

  • Hellberg ME (2006) No variation and low synonymous substitution rates in coral mtDNA despite high nuclear variation. BMC Evol Biol 6:24

    Article  Google Scholar 

  • Holland BS, Dawson MN, Crow GL, Hofmann DK (2004) Global phylogeography of Cassiopea (Scyphozoa : Rhizostomeae): molecular evidence for cryptic species and multiple invasions of the Hawaiian Islands. Mar Biol 145:1119–1128

    Article  Google Scholar 

  • Janzen DH (2004) Now is the time. Proc R Soc Lond B Biol Sci 359:731–732

    Article  Google Scholar 

  • Johnson NK, Cicero C (2004) New mitochondrial DNA data affirm the importance of Pleistocene speciation in North American birds. Evolution 58:1122–1130

    Google Scholar 

  • Jones GP, McCormick MI, Srinivasan M, Eagle JV (2004) Coral decline threatens fish biodiversity in marine reserves. Proc Natl Acad Sci USA 101:8251–8253

    Article  Google Scholar 

  • Knowlton N (1993) Sibling Species in the Sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N (2001) The future of coral reefs. Proc Natl Acad Sci USA 98:5419–5425

    Article  Google Scholar 

  • Lazoski C, Sole-Cava AM, Boury-Esnault N, Klautau M, Russo CAM (2001) Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Mar Biol 139:421–429

    Article  Google Scholar 

  • Lefebure T, Douady CJ, Gouy M, Gibert J (2006) Relationship between morphological taxonomy and molecular divergence within Crustacea: Proposal of a molecular threshold to help species delimitation. Mol Phylogenet Evol 40:435–447

    Article  Google Scholar 

  • Lipscomb D, Platnick N, Wheeler Q (2003) The intellectual content of taxonomy: a comment on DNA taxonomy. Trends Ecol Evol 18:65–66

    Article  Google Scholar 

  • Livak KJ (1999) Allelic discrimination using fluorogenic probes and the 5 ‘ nuclease assay. Genet Anal Biomol Eng 14:143–149

    Article  Google Scholar 

  • Livak KJ, Flood SJA, Marmaro J, Giusti W, Deetz K (1995) Oligonucleotides with fluorescent dyes at oppposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods & Applications 4:357–362

    Google Scholar 

  • Mace GM (2004) The role of taxonomy in species conservation. Philos Trans R Soc Lond B 359:711–719

    Article  Google Scholar 

  • MaKinster JG, Roberts JE, Felder DL, Chlan CA, Bourdreaux M, Bilodeau AL, Neigel JE (1999) PCR amplification of a middle repetitive element detects larval stone crabs (Crustacea: Decapoda: Menippidae) in estuarine plankton samples. Mar Ecol Prog Ser 188:161–168

    Google Scholar 

  • Markmann M, Tautz D (2005) Reverse taxonomy: an approach towards determining the diversity of meiobenthic organisms based on ribosomal RNA signature sequences. Proc R Soc Lond B Biol Sci 360:1917–1924

    Article  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic-rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  Google Scholar 

  • Matz MV, Nielsen R (2005) A likelihood ratio test for species membership based on DNA sequence data. Proc R Soc Lond B Biol Sci 360:1969–1974

    Article  Google Scholar 

  • McClanahan TR (2002) The near future of coral reefs. Environ Conserv 29:460–483

    Article  Google Scholar 

  • McFadden CS, Tullis I, Hutchinson MB, Winner K (2000) Rates of evolution of cnidarian mitochondrial genes. Am Zool 40:1124–1124

    Google Scholar 

  • McManus J (1985) Marine speciation, tectonics and sea-level changes in southeast Asia. Proc 5th Int Coral Reef Congr 4:133–138

    Google Scholar 

  • Meyer CP, Paulay G (2005) DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology 3:2229–2238

    Google Scholar 

  • Mikkelsen PM, Cracraft J (2001) Marine biodiversity and the need for systematic inventories. Bull Mar Sci 69:525–534

    Google Scholar 

  • Moritz C, Cicero C (2004) DNA barcoding: Promise and pitfalls. PLoS Biology 2:1529–1531

    Article  Google Scholar 

  • Naviaux RK, Good B, McPherson JD, Steffen DL, Markusic D, Ransom B, Corbeil J (2005) Sand DNA - a genetic library of life at the water’s edge. Mar Ecol Prog Ser 301:9–22

    Article  Google Scholar 

  • Neigel JE (2003) Species-area relationships and marine conservation. Ecol Appl 13:S138–S145

    Article  Google Scholar 

  • Neigel JE, Avise JC (1986) Phylogenetic relationships of mitochondrial DNA under various demographic models of speciation. In: Karlin S, Nevo E (eds) Evolutionary Processes and Theory. Academic Press, New York, pp 515–534

    Google Scholar 

  • Nielsen R, Matz M (2006) Statistical approaches for DNA barcoding. Syst Biol 55:162–169

    Article  Google Scholar 

  • O’Dor R, Gallardo VA (2005) How to census marine life: ocean realm field projects. Sci Mar 69:181–199

    Google Scholar 

  • Pandolfi JM, Bradbury RH, Sala E, Hughes TP, Bjorndal KA, Cooke RG, McArdle D, McClenachan L, Newman MJH, Paredes G, Warner RR, Jackson JBC (2003) Global trajectories of the long-term decline of coral reef ecosystems. Science 301:955–958

    Article  Google Scholar 

  • Paquin P, Hedin M (2004) The power and perils of ‘molecular taxonomy’: a case study of eyeless and endangered Cicurina (Araneae : Dictynidae) from Texas caves. Mol Ecol 13:3239–3255

    Article  Google Scholar 

  • Pegg G, Sinclair B, Briskey L, Aspden W (2006) MtDNA barcode identification of fish larvae in the southern Great Barrier Reef, Australia. Sci Mar 70S2:7–12

    Google Scholar 

  • Powers T (2004) Nematode molecular diagnostics: From bands to barcodes. Annu Rev Phytopahtol 42:367–383

    Article  Google Scholar 

  • Ratnasingham S, Hebert PDN (2007) BOLD: The Barcode of Life Data Systems. Mol Ecol Notes 7:355–364

    Article  Google Scholar 

  • Reaka-Kudla ML (1997) The global biodiversity of coral reefs: A comparison with rain forests. In: Reaka-Kudla ML, Wilson DE, Wilson EO (eds) Biodiversity II: understanding and protecting our biological resources. Joseph Henry Press, Washington, pp 83–108

    Google Scholar 

  • Reaka-Kudla ML (2000) The evolution of endemism in insular Pacific faunas: coral-dwelling stomatopods. Journal of Crustacean Biology 20:56–70

    Google Scholar 

  • Relogio A, Schwager C, Richter A, Ansorge W, Valcarcel J (2002) Optimization of oligonucleotide-based DNA microarrays. Nucl Acids Res 30:e51

    Article  Google Scholar 

  • Richardson D, Vanwye J, Exum A, Cowen R, Crawford D (2006) High-throughput species identification: from DNA isolation to bioinformatics. Mol Ecol Notes “in press”

  • Robba L, Russell SJ, Barker GL, Brodie J (2006) Assessing the use of the mitochondrial cox1 marker for use in DNA barcoding of red algae (Rhodophyta). Am J Bot 93:1101–1108

    Google Scholar 

  • Roberts CM (1997) Connectivity and management of Caribbean coral reefs. Science 278:1454–1457

    Article  Google Scholar 

  • Roberts CM, McClean CJ, Veron JEN, Hawkins JP, Allen GR, McAllister DE, Mittermeier CG, Schueler FW, Spalding M, Wells F, Vynne C, Werner TB (2002) Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295:1280–1284

    Article  Google Scholar 

  • Romano SL, Palumbi SR (1996) Evolution of scleractinian corals inferred from molecular systematics. Science 271:640–642

    Article  Google Scholar 

  • Rubinoff D (2006) DNA barcoding evolves into the familiar. Conserv Biol 20:1548–1549

    Article  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Proc R Soc Lond B Biol Sci 360:1879–1888

    Article  Google Scholar 

  • Schander C, Willassen E (2005) What can biological barcoding do for marine biology?. Mar Biol Res 1:79–83

    Article  Google Scholar 

  • Shaw KL (2002) Conflict between nuclear and mitochondrial DNA phylogenies of a recent species radiation: What mtDNA reveals and conceals about modes of speciation in Hawaiian crickets. Proc Natl Acad Sci USA 99:16122–16127

    Article  Google Scholar 

  • Shearer TL, Coffroth MA (2006) Genetic identification of Caribbean scleractinian coral recruits at the Flower Garden Banks and the Florida Keys. Mar Ecol Prog Ser 306:133–142

    Article  Google Scholar 

  • Shearer TL, Van Oppen MJH, Romano SL, Worheide G (2002) Slow mitochondrial DNA sequence evolution in the Anthozoa (Cnidaria). Mol Ecol 11:2475–2487

    Article  Google Scholar 

  • Smith PJ, McVeagh SM, Allain V, Sanchez C (2005) DNA identification of gut contents of large pelagic fishes. J Fish Biol 67:1178–1183

    Article  Google Scholar 

  • St Mary CM, Osenberg CW, Frazer TK, Lindberg WJ (2000) Stage structure, density dependence and the efficacy of marine reserves. Bull Mar Sci 66:675–690

    Google Scholar 

  • Stanley SM (1998) Macroevolution, Pattern and Process. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Summerbell RC, Levesque CA, Seifert KA, Bovers M, Fell JW, Diaz MR, Boekhout T, de Hoog GS, Stalpers J, Crous PW (2005) Microcoding: the second step in DNA barcoding. Proc R Soc Lond B Biol Sci 360:1897–1903

    Article  Google Scholar 

  • Tringe SG, Rubin EM (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Genet 6:805–814

    Article  Google Scholar 

  • Vadopalas B, Bouma JV, Jackels CR, Friedman CS (2006) Application of real-time PCR for simultaneous identification and quantification of larval abalone. J Exp Mar Biol Ecol 334:219–228

    Article  Google Scholar 

  • van Oppen MJH, Gates RD (2006) Conservation genetics and the resilience of reef-building corals. Mol Ecol 15:3863–3883

    Article  Google Scholar 

  • Vawter L, Brown WM (1986) Nuclear and mitochondrial DNA comparisons reveal extreme rate variation in the molecular clock. Science 234:194–196

    Article  Google Scholar 

  • Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D, Eisen JA, Wu DY, Paulsen I, Nelson KE, Nelson W, Fouts DE, Levy S, Knap AH, Lomas MW, Nealson K, White O, Peterson J, Hoffman J, Parsons R, Baden-Tillson H, Pfannkoch C, Rogers YH, Smith HO (2004) Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74

    Article  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PDN (2005) DNA barcoding Australia’s fish species. Proc R Soc Lond B Biol Sci 360:1847–1857

    Article  Google Scholar 

  • Watanabe S, Minegishi Y, Yoshinaga T, Aoyama J, Tsukamoto K (2004) A quick method for species identification of Japanese eel (Anguilla japonica) using real-time PCR: An onboard application for use during sampling surveys. Mar Biotechnol 6:566–574

    Article  Google Scholar 

  • Webb KE, Barnes DKA, Clark MS, Bowden DA (2006) DNA barcoding: A molecular tool to identify Antarctic marine larvae. Deep-Sea Res Part II 53:1053–1060

    Article  Google Scholar 

  • Wheeler QD (2005) Losing the plot: DNA “barcodes” and taxonomy. Cladistics 21:405–407

    Article  Google Scholar 

  • Will KW, Rubinoff D (2004) Myth of the molecule: DNA barcodes for species cannot replace morphology for identification and classification. Cladistics 20:47–55

    Article  Google Scholar 

  • Will KW, Mishler BD, Wheeler QD (2005) The perils of DNA barcoding and the need for integrative taxonomy. Syst Biol :54

  • Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. Proc Natl Acad Sci USA 84:9054–9058

    Article  Google Scholar 

Download references

Acknowledgments

We thank Bob Hanner for allowing us to analyze the progress of FISH-BOL and for providing us with updates on CBOL projects, James Albert and Emily Capuli for providing us with a current list of reef-associated fish species, Bob Vrijenhoek and two anonymous reviewers for helpful comments, and the National Science Foundation for support (OCE 0326383). We also thank the organizers and participants of the Coral Reef Barcoding and Environmental Sampling Workshop held at the Smithsonian Tropical Research Institute in 2005 for their stimulating discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Neigel.

Additional information

Communicated by Biology Editor M. van Oppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neigel, J., Domingo, A. & Stake, J. DNA barcoding as a tool for coral reef conservation. Coral Reefs 26, 487–499 (2007). https://doi.org/10.1007/s00338-007-0248-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-007-0248-4

Keywords

Navigation