Skip to main content

Advertisement

Log in

Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Biogeographic investigations have suggested that coral-symbiont associations can adapt to higher temperatures by hosting a heat-tolerant Symbiodinium, phylotype D. It is hypothesized that phylotype D is absent in high latitudes due to its heat-tolerant characteristics. In this study, this hypothesis was tested by examining the symbiont diversity in a scleractinian coral, Oulastrea crispata, throughout its entire latitudinal distribution range in the West Pacific. Molecular phylotyping of the 5′-end of the nuclear large subunit of ribosomal DNA (lsu rDNA) indicated that phylotype D was the dominant Symbiodinium in O. crispata from the tropical reefs to the marginal non-reefal coral communities. Several colonies of tropical populations were associated with phylotype C, either alone or simultaneously with phylotype D. Analysis of the polymerase chain reaction products using single-strand conformation polymorphism (SSCP) detected relatively low densities of phylotype C in most of the O. crispata colonies surveyed. These results provide evidence for the occurrence of phylotype D in cold-water outlying coral communities. The dominant occurrence of phylotype C in some O. crispata colonies on tropical reefs and the relatively low densities of phylotype C identified by SSCP in subtropical and temperate populations show that the dominant symbiont type can vary in this coral species and that multiple symbionts can co-occur in the same host.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Baker AC (2001) Reef corals bleach to survive change. Nature 411:765–766

    Article  Google Scholar 

  • Baker AC (2003) Flexibility and specificity in coral-algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Syst 34:661–689

    Article  Google Scholar 

  • Baker AC, Starger CJ, McClanahan TR, Glynn PW (2004) Corals’ adaptive response to climate change. Nature 403:741

    Article  Google Scholar 

  • Berkelmans R, van Oppen MJ (2006) The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’ for coral reefs in an era of climate change. Proc R Soc Lond B Biol Sci 273: 2305–2312

    Article  Google Scholar 

  • Brown BE (1997a) Adaptations of reef corals to physical environmental stress. Adv Mar Biol 31:222–299

    Google Scholar 

  • Brown BE (1997b) Coral bleaching: causes and consequences. Coral Reefs 16:S129–S138

    Article  Google Scholar 

  • Carlos AA, Baillie BK, Brett K, Kawaguchi M, Maruyama T (1999) Phylogenetic position of Symbiodinium (Dinophyceae) isolates from tridacnids (Bivalvia), cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free-living strain. J Phycol 35:1054–1062

    Article  Google Scholar 

  • Chen CA, Lam KK, Nakano Y, Tsai WS (2003) A stable association of the stress-tolerant zooxanthellae, Symbiodinium clade D, with the low-temperature-tolerant coral, Oulastrea crispata (Scleractinia : Faviidae) in subtropical non-reefal coral communities. Zool Stud 42:540–550

    Google Scholar 

  • Chen CA, Wang JT, Fang LS, Yang YW (2005a) Fluctuating algal symbiont communities in Acropora palifera (Cnidaria; Scleractinia) from Taiwan. Mar Ecol Prog Ser 295:343–347

    Google Scholar 

  • Chen CA, Yang YW, Wei NV, Tsai WS, Fang LS (2005b) Symbiont diversity in the scleractinian corals from tropical reefs and non-reefal communities in Taiwan. Coral Reefs 24:11–22

    Article  Google Scholar 

  • Coffroth MA, Santos SR (2005) Genetic diversity of symbiotic dinoflagellates in the genus Symbiodinium. Protist 156:19–34

    Article  Google Scholar 

  • Coles SL, Brown BE (2003) Coral bleaching—capacity for acclimatization and adaptation. Adv Mar Biol 46:183–223

    Article  Google Scholar 

  • Douglas AE (2003) Coral bleaching—how and why? Mar Pollut Bull 46:385–392

    Article  Google Scholar 

  • Fabricius KE, Mieog JC, Colin PL, Idip D, van Oppen MJH (2004) Identity and diversity of coral endosymbionts (zooxanthellae) from three Palauan reefs with contrasting bleaching, temperature and shading histories. Mol Ecol 13:2445–2458

    Article  Google Scholar 

  • Garcia L, Pochon X, Pawlowski J (2006) Molecular evidence for host-symbiont specificity in soritid foraminifera. Protist 156: 399–412

    Google Scholar 

  • Gilbert DC (1994) SeqApp 1.9. A biological sequence editor and analysis program for Macintosh computers. Available from ftp.indiana.edu

  • Glynn PW, Mate JL, Baker AC, Calderon MO (2001) Coral bleaching and mortality in Panama and Ecuador during the 1997–1998 El Nino-Southern oscillation event: spatial/temporal patterns and comparisons with the 1982–1983 event. Bull Mar Sci 69:79–109

    Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshw Res 50:839–866

    Article  Google Scholar 

  • Hoegh-Guldberg O, Jones RJ, Ward S, Loh WK (2002) Is coral bleaching really adaptive? Nature 415:601–602

    Article  Google Scholar 

  • Hughes TP, Baird AH, Bellwood DR, Card M, Connolly SR, Folke C, Grosberg R, Hoegh-Guldberg O, Jackson JBC, Kleypas J, Lough JM, Marshall P, Nyström M, Palumbi SR, Pandolfi JM, Rosen B, Roughgarden J (2003) Climate change, human impacts, and the resilience of coral reefs. Science 301:929–933

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltran VH, LaJeunesse TC, Reyes-Bonilla H, Thome PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B Biol Sci 271:1757–1763

    Article  Google Scholar 

  • LaJeunesse TC, Loh WKW, van Woesik R, Hoegh-Guldberg O, Schimdt GW, Fitt WK (2003) Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48:2046–2054

    Article  Google Scholar 

  • LaJeunesse TC, Bhagooli R, Hidaka M, deVantier L, Don T, Schimdt GW, Fitt WK, Hoegh-Guldberg O (2004a) Closely related Symbiodinium spp. differ in relative dominance in coral reef host communities across environmental, latitudinal and biogeographic gradients. Mar Ecol Prog Ser 284:147–161

    Google Scholar 

  • LaJeunesse TC, Thornhill DJ, Cox FF, Stanton FG, Fitt WK, Schmidt GW (2004b) High diversity and host-specificity observed among symbiotic dinoflagellates in reef coral communities from Hawaii. Coral Reefs 23:596–603

    Google Scholar 

  • Lam KK (2000) Sexual reproduction of a low-temperature tolerant coral Oulastrea crispata (Scleractinia, Faviidae) in Hong Kong, China. Mar Ecol Prog Ser 205:101–111

    Google Scholar 

  • Loh W, Hidaka M, Hirose M, Titlyanov EA (2002) Genotypic diversity of symbiotic dinoflagellates associated with hermatypic corals from a fringing reef at Sesoko Island, Okinawa. Galaxea 4:1–9

    Google Scholar 

  • Nakano Y, Yamazato K (1992) Ecological study of reproduction of Oulastrea crispata in Okinawa. Zool Sci 9:1292

    Google Scholar 

  • Orita M, Iwahana H, Kanazawa H, Hayashi K, Sekiya T (1989a) Detection of polymorphism of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci USA 86:2766–2770

    Article  Google Scholar 

  • Orita M, Suzuki Y, Sekiya T, Hayashi K (1989b) A rapid and sensitive detection of point mutations and genetic polymorphisms using polymerase chain reaction. Genomics 5:874–879

    Article  Google Scholar 

  • Pochon X, Montoya-Burgos JI, Stadeklmann B, Pawlowski J (2006) Molecular phylogeny, evolutionary rates, and divergence timing of the symbiotic dinoflagellate genus Symbiodinium. Mol Phylogenet Evol 38:20–30

    Article  Google Scholar 

  • Posada D, Buckley TR (2004) Model selection and model averaging in phylogenetics: advantages of the AIC and Bayesian approaches over likelihood ratio tests. Syst Biol 53:793–808

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  Google Scholar 

  • Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34:407–417

    Article  Google Scholar 

  • Rowan R (2004) Thermal adaptation in reef coral symbionts. Nature 430:742

    Article  Google Scholar 

  • Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc Natl Acad Sci USA 28:2850–2853

    Article  Google Scholar 

  • Rowan R, Powers D (1991a) Molecular genetic identification of symbiotic dinoflagellates (zooxanthellae). Mar Ecol Prog Ser 71:65–73

    Google Scholar 

  • Rowan R, Powers DA (1991b) A molecular genetic classification of zooxanthellae and the evolution of animal-algal symbioses. Science 251:1348–1351

    Article  Google Scholar 

  • Rowan R, Knowlton N, Baker A, Jara J (1997) Landscape ecology of algal symbionts creates variation in episodes of coral bleaching. Nature 388:265–269

    Article  Google Scholar 

  • Schoenberg CHL, Loh WKW (2005) Molecular identity of the unique symbiotic dinoflagellates found in the bioeroding demosponge Cliona orientalis. Mar Ecol Prog Ser 299:157–166

    Google Scholar 

  • Sotka EE, Thacker RW (2005) Do some corals like it hot? Trends Ecol Evol 20:59–62

    Article  Google Scholar 

  • Swofford DL (2002) PAUP 4.10b: phylogenetic analysis using parsimony (and other methods). Sinauer Associates, Sunderland

    Google Scholar 

  • Tchernov D, Gorbunov MY, de Vargas C, Yadav SN, Milligan AJ, Häggblom M, Falkowski PG (2004) Membrane lipid of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc Natl Acad Sci USA 101:13531–13535

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL X: improving the sensitivity of progressive multiple sequence alignments through sequence weighting, position-specific gap penalties and weight matrix choice. Nuclei Acids Res 22:4673–4680

    Article  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001a) Zooxanthellae of the Montastraea annularis species complex: patterns of distribution of four taxa of Symbiodinium on different reefs and across depths. Biol Bull 201:348–359

    Article  Google Scholar 

  • Toller WW, Rowan R, Knowlton N (2001b) Repopulation of zooxanthellae in the Caribbean corals Montastraea annularis and M. faveolata following experimental and disease-associated bleaching. Biol Bull 201:360–373

    Article  Google Scholar 

  • van Oppen MJH, Mieog JC, Sánchez CA, Fabricius KE (2005) Diversity of algal endosymbionts (zooxanthellae) in octocorals: the roles of geography and host relationships. Mol Ecol 14:2403–2417

    Article  Google Scholar 

  • van Oppen MJH, Palstra FP, Piquet AMT, Miller DJ (2001) Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc R Soc Lond Ser B 268:1759–1767

    Article  Google Scholar 

  • Veron JEN (1995) Corals in Space and Time. University of New South Wales Press, Sydney

    Google Scholar 

  • Veron JEN (2000) Corals of the world. Australian Institute of Marine Science, Townsville

    Google Scholar 

  • Yajima T, Sano O, Okamoto T, Yoshohiro S, Thutomu S, Masahiro M (1986) Ecological distribution of the reef coral, Oulastrea crispata (Lamarck) at the shore region in the vicinity of Tukumo Bay. Bull Jpn Sea Res Inst Kanazawa Univ 18:21–36

    Google Scholar 

Download references

Acknowledgments

Many thanks to K. K. Lam, Q.-C. Chen, X.-C. Song, and P. Jarayabhand for hosting our field trips and for their coral collections. Special thanks to the Evolutionary Biology Group, Research Centre for Biodiversity, Academia Sinica (RCBAS), the three anonymous reviewers and Dr. M. van Oppen for the constructive comments. This work was supported by Academia Sinica Thematic grants (2002–2004, 2006–2007) to C.A.C, and by the RCBAS travel funds for field collections at Hainan and Weijhou Islands, China, and Si-Chiang, Bu-Lun and Sa-Tun, Thailand. This is the Evolution and Ecology Group, RCBAS contribution no. 41.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Chen.

Additional information

Communicated by Biology Editor M. van Oppen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lien, YT., Nakano, Y., Plathong, S. et al. Occurrence of the putatively heat-tolerant Symbiodinium phylotype D in high-latitudinal outlying coral communities. Coral Reefs 26, 35–44 (2007). https://doi.org/10.1007/s00338-006-0185-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-006-0185-7

Keywords

Navigation