Advertisement

Coral Reefs

, Volume 24, Issue 4, pp 636–645 | Cite as

Bioaccumulation of zinc in the scleractinian coral Stylophora pistillata

  • C. Ferrier-PagèsEmail author
  • F. Houlbrèque
  • E. Wyse
  • C. Richard
  • D. Allemand
  • F. Boisson
Report

Abstract

The uptake kinetics of zinc (Zn), an essential nutrient for both photosynthesis and calcification, in the tissue of S. pistillata showed that the transport of Zn is composed of a linear component (diffusion) at high concentrations and an active carrier-mediated component at low concentrations. The carrier affinity (K m=28 pmol l−1) was very low, indicating a good adaptation of the corals to low levels of Zn in seawater. Zn accumulation in the skeleton was linear; its level was dependent on the length of the incubation as well as on the external concentration of dissolved Zn. There was also a light-stimulation of Zn uptake, suggesting that zooxanthellae, through photosynthesis, are involved in this process. An enrichment of the incubation medium with 10 nM Zn significantly increased the photosynthetic efficiency of S. pistillata. This result suggests that corals living in oligotrophic waters might be limited in essential metals, such as zinc.

Key words

Corals Zinc Photosynthesis Calcification 

Notes

Acknowledgements

We are grateful to Mr. J.-F. Comanducci for his significant contribution in the set-up and the improvement of the nuclear detection system. We also thank Prof. U. Schreiber for fruitful discussions and three anonymous reviewers for their comments on the manuscript. The Agency is grateful for the support provided to its Marine Environment Laboratory by the Government of the Principality of Monaco.

References

  1. Anderson MA, Morel FMM (1978) Copper sensitivity of Gonyaulax tamarensis. Limnol Oceanogr 23:283–295Google Scholar
  2. Anderson MA, Morel FMM, Guillard RRL (1978) Growth limitation of a coastal diatom by low zinc ion activity. Nature 276:70–71CrossRefGoogle Scholar
  3. Bastidas C, Garcia E (1999) Metal content of the reef coral Porites astreoides: an evaluation of river influence and 35 years chronology. Mar Pollut Bull 38(10):899–907CrossRefGoogle Scholar
  4. Benazet-Tambutté S, Allemand D, Jaubert J (1996) Inorganic carbon supply to symbiont photosynthesis of the sea anemone Anemonia viridis: role of the oral epithelial layers. Symbiosis 20:199–217Google Scholar
  5. Brown BE (1982) The form and function of metal containing “granules” in invertebrate tissues. Biol Rev 57:621–627CrossRefGoogle Scholar
  6. Brown BE, Howard S (1985) Responses of coelenterates to trace metals: a field and laboratory evaluation. In: Gabrié C et al. (eds) Proceedings of the 5th international Coral Reef Congress Antenne Museum-EPHE, Moorea, vol 6, pp 465–470Google Scholar
  7. Bruland KW (1980) Oceanographic distributions of cadmium, zinc nickel and copper in the North Pacific. Earth Planet Sci Lett 47:176–198CrossRefGoogle Scholar
  8. Bruland KW (1989) Complexation of zinc by natural organic ligands in the Central North Pacific. Limnol Oceanogr 34:269–285Google Scholar
  9. Bryan GW, Gibbs PE (1983) Heavy metals in the Fal estuary Cornwall: a study of long term contamination by mining waste and its effects on estuarine organisms. University Press, Cambridge, p 7–34Google Scholar
  10. Buitenhuis ET, Timmermans KR, de Baar HJW (2003) Zinc-bicarbonate colimitation of Emiliana huxleyi. Limnol Oceanogr 48(4):1575–1582Google Scholar
  11. Coughtrey PJ, Martin MH (1976) The distribution of Pb, Zn, Cd, and Cu within the pulmonate mollusc Helix aspersa Müller. Oecologia (Berl) 23:323–334CrossRefGoogle Scholar
  12. Cullen JT, Lane TW, Morel FMM, Sherrell RM (1999) Modulation of cadmium uptake in phytoplankton by seawater CO2 concentration. Nature 402:165–167CrossRefGoogle Scholar
  13. David CP (2003) Heavy metal concentrations in growth bands of corals: a record of mine tailings input through time (Marinduque Island, Philippines). Mar Pollut Bull 46:187–196CrossRefPubMedGoogle Scholar
  14. De La Rocha CL, Hutchins DA, Brzezinski MA, Zhang Y (2000) Effects of iron and zinc deficiency on elemental composition and silica production by diatoms. Mar Ecol Prog Ser 195:71–79CrossRefGoogle Scholar
  15. Esslemont G (2000) Heavy metals in seawater, marine sediments and corals from the Townville section, Great Barrier Reef Marine Park, Queensland. Mar Chem 71(3/4):215–231CrossRefGoogle Scholar
  16. Esslemont G, Harriott VJ, McConchie DM (2000) Variability in trace metal concentrations within and between colonies of Pocillopora damicornis. Mar Pollut Bull 40(7):637–642CrossRefGoogle Scholar
  17. Fallon SJ, White JC, McCulloch MT (2002) Porites corals as recorders of mining and environmental impacts: Misima Island, Papua New Guinea. Geochim Cosmochim Acta 66(1):45–62CrossRefGoogle Scholar
  18. Ferrier-Pagès C, Gattuso J-P, Dallot S, Jaubert J (2000) Effect of nutrient enrichment on growth and photosynthesis of the zooxanthellate coral Stylophora pistillata. Coral Reefs 19:103–113CrossRefGoogle Scholar
  19. Ferrier-Pagès C, Boisson F, Allemand D, Tambutté E (2002). Kinetics of strontium uptake in the scleractinian coral Stylophora pistillata. Mar Ecol Prog Ser 245:93–100CrossRefGoogle Scholar
  20. Furla P, Benazet-Tambutté S, Jaubert J, Allemand D (1998) Diffusional permeability of dissolved inorganic carbon through the isolated oral epithelial layers of the sea anemone, Anemonia viridis. J Exp Mar Biol Ecol 221:71–88CrossRefGoogle Scholar
  21. Gardella DJ, Edmunds PJ (1999) The oxygen environment adjacent to the tissue of the scleractinian Dichocoenia stockesii and its effects on symbiont metabolism. Mar Biol 135:289–295CrossRefGoogle Scholar
  22. Greenberg RR, Kingston HM (1982) Simultaneous determination of twelve trace elements in estuarine and sea water using pre-irradiation chromatography. J Radioanal Chem 71(1–2):147–167CrossRefGoogle Scholar
  23. Grover R, Maguer JF, Reynaud-Vaganay S, Jaubert J, Ferrier-Pagès C (2002) Ammonium uptake rates in the scleractinian coral Stylophora pistillata. Limnol Oceanogr 47(3):782–790Google Scholar
  24. Grover R, Maguer JF, Allemand D, Ferrier-Pagès C (2003). Nitrate uptake by the scleractinian coral Stylophora pistillata. Limnol Oceanogr 48(6):2266–2274Google Scholar
  25. Gur A, Colpan L, Nas K, Cevik R, Sarac J, Erdogan F, Duz MZ (2002) The role of trace minerals in the pathogenesis of postmenopausal osteoporosis and a new effect of calcitonin. J Bone Miner Metab 20:39–43CrossRefPubMedGoogle Scholar
  26. Hanna RG, Muir GL (1990) Red Sea corals as biomonitors of trace metal pollution. Environ Monit Assess 14:211–222CrossRefGoogle Scholar
  27. Harland AD, Brown BE (1989) Metal tolerance in the scleractinian coral Porites lutea. Mar Pollut Bull 20:353–357CrossRefGoogle Scholar
  28. Harland AD, Nganro NR (1990) Copper uptake by the sea anemone Anemonia viridis and the role of zooxanthellae in metal regulation. Mar Biol 104:297–301CrossRefGoogle Scholar
  29. Howard LS, Brown BE (1984) Heavy metals and reef corals. Oceanogr Mar Biol Annu Rev 22:195–210Google Scholar
  30. Howell R (1982) The secretion of mucus by marine nematodes (Enoplus spp): a possible mechanism influencing the uptake and loss of heavy metal pollutants. Nematologia 28:110–114Google Scholar
  31. Hubbell SP, Sikora A, Paris OH (1965) Radiotracer, gravimetric and calorimetric studies of ingestion and assimilation rates of an isopod. Health Phys 11:1485–1501PubMedCrossRefGoogle Scholar
  32. Jones RJ, Hoegh-Guldberg O (2001) Diurnal changes in the photochemical efficiency of the symbiotic dinoflagellate (Dinophyceae) of corals: photoprotection, photoinactivation, and the relationship to coral bleaching. Plant Cell Environ 24:89–99CrossRefGoogle Scholar
  33. Kühl M, Cohen Y, Dalsgaard T, Jorgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH, and light. Mar Ecol Prog Ser 117:159–172CrossRefGoogle Scholar
  34. Lane TW, Morel FMM (2000) Regulation of carbonic anhydrase expression by zinc, cobalt, and carbon dioxide in the marine diatom Thalassiosira weissflogii. Plant Physiol 123(1):345–352CrossRefPubMedGoogle Scholar
  35. Lohan MC, Stratham PJ, Crawford DW (2002). Total dissolved zinc in the upper water column of the subarctic North East Pacific. Deep Sea Res 49:5793–5808CrossRefGoogle Scholar
  36. Martin JH, Gordon RM, Fitzwater S, Broenkow WW (1989) VERTEX: Phytoplankton/iron studies in the Gulf of Alaska. Deep Sea Res 36:649–680CrossRefGoogle Scholar
  37. Morel FMM, Hudson RJM, Price NM (1991) Limitation of productivity by trace metals in the sea. Limnol Oceanogr 36(8):1742–1755CrossRefGoogle Scholar
  38. Morel FMM, Reinfelder JR, Roberts SB, Chamberlain CP, Lee JG, Yee D (1994) Zinc and carbon colimitation of marine phytoplankton. Nature 369:740–742CrossRefGoogle Scholar
  39. Ralph PJ, Gademann R, Larkum AWD, Schreiber U (1999) In situ underwater measurements of photosynthetic activity of coral zooxanthellae and other reef-dwelling dinoflagellate endosymbionts. Mar Ecol Prog Ser 180:139–147CrossRefGoogle Scholar
  40. Reichelt-Brushett AJ, McOrist G (2003) Trace metals in the living and nonliving components of scleractinian corals. Mar Pollut Bull 46:1573–1582CrossRefPubMedGoogle Scholar
  41. Schreiber U, Endo T, Mi H, Hasada K (1995) Quenching analysis of chlorophyll fluorescence by the saturation pulse methods: particular aspects relating to the study of eukaryotic algae and cyanobacteria. Plant Cell Physiol 36:873–882Google Scholar
  42. Schultz KG, Zonderwan I, Gerringa LJA, Timmermans KR, Veldhuis MJW, Riebesell U (2004) Effect of trace metal availability on coccolithophorid calcification. Nature 430:673–676CrossRefPubMedGoogle Scholar
  43. Shen GT, Boyle EA (1988) Determination of lead, cadmium and other trace metals in annually-banded corals. Chem Geol 67:47–62CrossRefGoogle Scholar
  44. Shofield RMS, Nesson MH, Richardson KA, Wyeth P (2003) Zinc is incorporated into cuticular “tools” after ecdysis: the time course of zinc distribution in “tools” and whole bodies of an ant and a scorpion. J Insect Physiol 49:31–44CrossRefPubMedGoogle Scholar
  45. Sunda WG (1991) Trace metal interactions with marine phytoplankton. Biol Oceanogr 12:411–418Google Scholar
  46. Sunda WG, Huntsman SA (1995) Cobalt and zinc interreplacement in marine phytoplankton:biological and geochemical implications. Limnol Oceanogr 40:1404–1417CrossRefGoogle Scholar
  47. Tambutté E, Allemand D, Bourge I, Gattuso JP, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459CrossRefGoogle Scholar
  48. Yamaguchi M, Igarashi A, Uchiyama S (2004) Bioavailability of zinc yeast in rats: stimulatory effect of bone calcification in vivo. J Health Sci 50:75–81CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C. Ferrier-Pagès
    • 1
    Email author
  • F. Houlbrèque
    • 1
  • E. Wyse
    • 2
  • C. Richard
    • 1
  • D. Allemand
    • 1
  • F. Boisson
    • 2
  1. 1.Centre Scientifique de MonacoMonacoPrincipality of Monaco
  2. 2.International Atomic Energy AgencyMonacoPrincipality of Monaco

Personalised recommendations