Skip to main content
Log in

Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.)

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Monthly skeletal growth of the scleractinian, temperate coral Cladocora caespitosa (L.) from the Ligurian Sea (NW Mediterranean) was analysed for a period of 1 year and compared with seawater parameters. Measurements on corallite sections and on X-ray images showed that the formation of the high-density (HD) band and two dissepiments are favoured by fall–winter conditions, characterised by high quantities of rain, rough seas, and cold seawater. In summer, when the low-density (LD) band is formed, the corallites stretch upward and form one new dissepiment and one deep calix, where the polyps recede almost completely in August. These findings confirmed the adaptation of the temperate coral to winter environmental conditions, characterised by low irradiance and high availability of nutrients and food particles resuspended from bottom sediments. On the contrary, the high seawater temperature, irradiance, and ammonia contents stressed the coral in August and, when they persist in September, may cause the onset of mortality events.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anthony KRN (1999) Coral suspension feeding on fine particulate matter. J Exp Mar Biol Ecol 232:85–106

    Article  Google Scholar 

  • Anthony KRN, Fabricius KE (2000) Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J Exp Mar Biol Ecol 252:221–253

    Article  PubMed  Google Scholar 

  • Barnes DJ, Lough JM (1992) Systematic variations in the depth of the skeleton occupied by coral tissue in massive colonies of Porites from the Great Barrier Reef. J Exp Mar Biol Ecol 159:113–128

    Article  Google Scholar 

  • Barnes DJ, Lough JM (1993) On the nature and causes of density banding in massive coral skeleton. J Exp Mar Biol Ecol 167:91–108

    Article  Google Scholar 

  • Cattini E, Nair R, Peroni C, Rossi G (1992) Trophic conditions of waters in the Gulf of La Spezia (Ligurian Sea). Rapp Comm Int Mer Mèdit 33:66

    Google Scholar 

  • Cerrano C, Bavestrello G, Bianchi CN, Cattaneo-Vietti R, Bava S, Morganti C, Morri C, Picco P, Sara G, Schiaparelli S, Siccardi A, Sponga F (2000) A catastrophic mass-mortality episode of gorgonians and other organisms in the Ligurian Sea (North-Western Mediterranean), summer 1999. Ecol Lett 3:284–293

    Article  Google Scholar 

  • Cohen AL, Smith SR, McCartney MS, van Etten J (2004) How brain corals record climate: an integration of skeletal structure, growth and chemistry of Diploria labyrinthiformis from Bermuda. Mar Ecol Prog Ser 271:147–158

    Article  CAS  Google Scholar 

  • Corredor JE, Morell J (1985) Inorganic nitrogen in coral reef sediments. Mar Chem 16:379–384

    Article  CAS  Google Scholar 

  • Cruz-Piñón G, Carricart-Ganivet JP (2003) Monthly skeletal extension rates of the hermatypic corals Montastrea annularis and Montastrea faveolata: biological and environmental controls. Mar Biol 143:491–500

    Article  Google Scholar 

  • ENEA (2002) Sistema informativo e di monitoraggio marino costiero della provincia della Spezia. Enea, La Spezia, 134 pp

  • ENEA–ENEL (1993) Indagini sulle caratteristiche ambientali delle acque del Golfo di La Spezia in attuazione del protocollo EE.LL.–ENEL. Rapporto di sintesi 1992. Tech. Rep., ENEA, La Spezia, 52 pp

  • Estrada M, Vives F, Alcaraz M (1985) Life and productivity of the open sea. In: Margaleff R (ed) Western Mediterranean. Pergamon, New York, pp 148–197

    Google Scholar 

  • Garrabou J, Perez T, Sartoretto S, Harmelin JG (2001) Mass mortality in red coral Corallium rubrum populations in the Provence region (France, NW Mediterranean). Mar Ecol Prog Ser 217:263–272

    Article  Google Scholar 

  • Highsmith RC (1979) Coral growth rates and environmental control of density banding. J Exp Mar Biol Ecol 37:105–125

    Article  Google Scholar 

  • Hoegh-Guldberg O (1999) Climate change, coral bleaching and the future of the world’s coral reefs. Mar Freshwater Res 50(8):839–866

    Article  Google Scholar 

  • Howe SA, Marshall AT (2002) Temperature effects on calcification rates and skeletal deposition in the temperate coral, Plesiastrea versipora (Lamarck). J Exp Mar Biol Ecol 275:63–81

    Article  CAS  Google Scholar 

  • ISTAT (2000) Statistiche Metereologiche. Anni 1997–1998. Istat, Roma

  • Kružic P, Požar-Domac A (2004) Banks of the coral Cladocora caespitosa (Anthozoa, Scleractinia) in the Adriatic Sea. Coral Reefs 22(4):536

    Article  Google Scholar 

  • Logan A, Tomascik T (1991) Extension growth rates in two coral species from high latitude reefs of Bermuda. Coral Reefs 10:155–160

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1992) Comparisons of skeletal density variations in Porites from the central Great Barrier Reef. J Exp Mar Biol Ecol 155:1–25

    Article  Google Scholar 

  • Lough JM, Barnes DJ (1997) Several centuries of variation in skeletal extension, density and calcification in massive Porites colonies from the Great Barrier Reef: a proxy for seawater temperature and a background of variability against which to identify unnatural change. J Exp Mar Biol Ecol 211:29–67

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN (1999) Skeleton growth and density pattern of the zooxanthellate scleractinian Cladocora caespitosa (L.) from the Ligurian Sea (NW Mediterranean). Mar Ecol Prog Ser 185:195–201

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Rodolfo-Metalpa R (2001) Biomass, carbonate standing stock and production of the Mediterranean coral Cladocora caespitosa (L.). Facies 44:75–80

    Article  Google Scholar 

  • Peirano A, Morri C, Bianchi CN, Aguirre J, Antonioli F, Calzetta G, Carobene L, Mastronuzzi G, Orru’ P (2004) The Mediterranean coral Cladocora caespitosa: a proxy for past climate fluctuations? Glob Planet Change 40(1–2):195–200

    Article  Google Scholar 

  • Pirc H (1985) Growth dinamics in Posidonia oceanica (L.) Delile. I. Seasonal changes of soluble carbohydrates, starch, free amino acids, nitrogen and organic anions in different parts of the plant. PSZN I: Mar Ecol 6(2):141–165

    CAS  Google Scholar 

  • Ribes M, Coma R, Gili J-M (1999) Heterogeneous feeding in benthic suspension feeders: the natural diet and grazing rate of the temperate gorgonian Paramuricea clavata (Cnidaria: Octocorallia) over a year cycle. Mar Ecol Prog Ser 183:125–137

    Article  Google Scholar 

  • Rodolfo-Metalpa R, Bianchi CN, Peirano A, Morri C (2000) Coral mortality in NW Mediterranean. Coral Reefs 19(1):24

    Article  Google Scholar 

  • Rosenfield M, Bresler V, Abelson A (1999) Sediment as a possible source of food for corals. Ecol Lett 2:345–348

    Article  Google Scholar 

  • Schiller C (1993a) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): II. Energy budget. PSZN I: Mar Ecol 14(3):221–238

    Google Scholar 

  • Schiller C (1993b) Ecology of the symbiotic coral Cladocora caespitosa (L.) (Faviidae, Scleractinia) in the Bay of Piran (Adriatic Sea): I. Distribution and ecology. PSZN I: Mar Ecol 14(3):205–219

    Article  Google Scholar 

  • Schneider RC, Smith SV (1982) Skeletal Sr content and density in Porites spp. in relation to environmental factors. Mar Biol 66:121–131

    Article  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1973) In: Kennedy D, Park RB (eds) Introduction to biostatistics. Freeman, San Francisco, 368 pp

  • Suzuki A, Gagan MK, Fabricius K, Isdale PJ, Yukino I, Kawahata H (2003) Skeletal isotope microprofiles in growth perturbations in Porites corals during the 1997–1998 mass bleaching event. Coral Reefs 22:357–369

    Article  Google Scholar 

  • UNEP (1991) Standard chemical methods for marine environmental monitoring. Reference methods for marine pollution studies N.5046. UNEP, Athens, 46 pp

  • UNESCO (1966) Determination of photosynthetic pigments in seawater. In: Monographs on oceanographic methodology. UNESCO, Paris, 69 pp

  • Wellington GM, Dunbar RB (1995) Stable isotopic signature of El Niňo-Southern oscillation events in the eastern tropical Pacific coral reefs. Coral Reefs 14:5–25

    Article  Google Scholar 

Download references

Acknowledgements

We thank H. Lasker and anonymous reviewers for their suggestions that significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Peirano.

Additional information

Communicated by Biological Editor H.R. Lasker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peirano, A., Abbate, M., Cerrati, G. et al. Monthly variations in calix growth, polyp tissue, and density banding of the Mediterranean scleractinian Cladocora caespitosa (L.). Coral Reefs 24, 404–409 (2005). https://doi.org/10.1007/s00338-005-0020-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-005-0020-6

Keywords

Navigation