Skip to main content
Log in

Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization

  • Report
  • Published:
Coral Reefs Aims and scope Submit manuscript

Abstract

Soluble organic matrix (SOM) synthesis and secretion were investigated in two scleractinian corals using antibodies raised against this organic matrix. Results demonstrate that even if other cell types, including zooxanthellae, can supply precursors for SOM synthesis, only calicoblastic cells facing the skeleton are directly responsible for the synthesis and secretion of the SOM components. Results also indicate that, as is the case for other biominerals, skeleton formation is biologically controlled and not chemically dominated as originally believed. In addition to advancing the understanding of mechanisms of coral biomineralization, these antibodies could have numerous applications: for example as markers of skeletogenesis, as tools for cell culture, and in comparative studies among calcifying organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allemand D, Zoccola D, Tambutté E (2000) Physiological mechanisms underlying biomineralization process in the scleractinian coral Stylophora pistillata. In: Goldberg M, Boskey A, Robinson C (eds) Proceedings of the 6th international conference on chemistry and biology of mineralized tissues, Vittel, pp 3–6

  • Ameye L, Hermann R, Killian C, Wilt F, Dubois P (1999) Ultrastructural localization of proteins involved in sea urchin biomineralization. J Histochem Cytochem 47:1189–1200

    CAS  PubMed  Google Scholar 

  • Arnaud E, De Pollak C, Meunier A, Sedel L, Damien C, Petite H (1999) Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty. Biomaterials 20(20):1909–1918

    Article  CAS  PubMed  Google Scholar 

  • Barnes DJ, Chalker BE (1990) Calcification and photosynthesis in reef-building corals and algae. In: Dubinsky Z (ed) Coral reefs. Elsevier, Amsterdam, pp 109–131

    Google Scholar 

  • Bryan WH, Hill D (1941) Spherulitic crystallization as a mechanism of skeletal growth in the hexacorals. P Roy Soc Queensl 52:78–91

    Google Scholar 

  • Clode PL, Marshall AT (2003) Calcium associated with a fibrillar organic matrix in the scleractinian coral Galaxea fascicularis. Protoplasma 220:153–161

    Article  CAS  PubMed  Google Scholar 

  • Constantz BR (1986) Coral skeleton construction: a physiochemically dominated process. Palaios 1:152–157

    Google Scholar 

  • Constantz B, Weiner S (1988) Acidic macromolecules associated with the mineral phase of scleractinian coral skeletons. J Exp Zool 248:253–258

    CAS  Google Scholar 

  • Cuif JP, Dauphin Y, Gautret P (1997) Biomineralization features in scleractinian coral skeletons: source of new taxonomic criteria. Boletin de la Real Sociedad Espanola de Historia natural (Seccion Geologica) 92:129–141

    Google Scholar 

  • Cuif JP, Dauphin Y, Freiwald A, Gautret P, Zibrowius H (1999) Biochemical markers of zooxanthellae symbiosis in soluble matrices of skeleton of 24 Scleractinia species. Comp Biochem Physiol 123A:269–278

    Google Scholar 

  • Dauphin Y (2001) Comparative studies of skeletal soluble matrices from some Scleractinian corals and Molluscs. Int J Biol Macromol 28:293–304

    Article  CAS  PubMed  Google Scholar 

  • Demers C, Reggie Hamdy C, Corsi K, Chellat F, Tabrizian M, Yahia L (2002) Natural coral exoskeleton as a bone graft substitute: a review. Biomed Mater Eng 12:15–35

    PubMed  Google Scholar 

  • Dewel RA (2000) Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. J Morphol 243:35–74

    Article  CAS  PubMed  Google Scholar 

  • Domart-Coulon IJ, Elbert DC, Scully EP, Calimlim PS, Ostrander GK (2001) Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc Natl Acad Sci U S A 98:11885–11890

    Article  CAS  PubMed  Google Scholar 

  • Domart-Coulon I, Tambutté S, Tambutté E, Allemand D (2004) Short term viability of soft tissue detached from the skeleton of reef-building corals. J Exp Mar Biol Ecol 309:199–217

    Article  Google Scholar 

  • Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusk shell macromolecules. Science 271:67–69

    Google Scholar 

  • Field KG, Olsen GJ, Lane DJ, Giovannoni SJ, Ghiselin MT, Raff EC, Pace NR, Raff RA (1988) Molecular phylogeny of the animal kingdom. Science 239:748–753

    CAS  PubMed  Google Scholar 

  • Frank U, Rabinowitz B, Rinkevich B (1994) In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar Biol 120:491–499

    Google Scholar 

  • Freshney RI (1987) Culture of animal cells. A manual of basic technique, 2nd edn. Wiley-Liss Inc., New York, pp 1–6

    Google Scholar 

  • Fukuda I, Ooki S, Fujita T, Murayama E, Nagasawa H, Isa Y, Watanabe T (2003) Molecular cloning of a cDNA encoding a soluble protein in the coral exoskeleton. Biochem Biophys Res Commun 304:11–17

    Article  CAS  PubMed  Google Scholar 

  • Gattuso JP, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Amer Zool 39:160–183

    CAS  Google Scholar 

  • Gautret P, Marin F (1992) Evaluation of diagenesis in scleractinian corals and calcified desmosponges by substitution index measurement and intraskeletal organic matrix analysis. Courier Forschungs- institut Senckenberg 164:317–327

    Google Scholar 

  • Gautret P, Cuif JP, Freiwald A (1997) Composition of soluble mineralizing matrices in zooxanthellate and non-zooxanthellate scleractinian corals: biochemical assessment of photosynthetic metabolism through the study of a skeletal feature. Facies 36:189–194

    Google Scholar 

  • Gautret P, Cuif JP, Stolarski J (2000) Organic components of the skeleton of scleractinian corals—evidence from in situ acridine orange staining. Acta Palaeontol Pol 45:107–118

    Google Scholar 

  • Goldberg WM (2001) Acid polysaccharides in the skeletal matrix and calicoblastic epithelium of the stony coral Mycetophyllia reesi. Tissue Cell 33:376–387

    Article  CAS  PubMed  Google Scholar 

  • Grobstein C (1965) Differentiation: environmental factors, chemical and cellular. In: Willmer EN (ed) Cells and tissues in culture. Methods, biology and physiology, vol 1. Academic, London, pp 463–488

  • Johnston IS (1979) The organization of a structural organic matrix within the skeleton of a reef-building coral. Scanning Electron Microsc II:421–431

    Google Scholar 

  • Johnston IS (1980) The ultrastructure of skeletogenesis in zooxanthellate corals. Int Rev Cytol 67:171–214

    CAS  Google Scholar 

  • Kingsley RJ, Bernhardt AM, Wilbur KM, Watabe N (1987) Scleroblast cultures from the gorgonian Leptogorgia virgulata Lam. (coelenterata, gorgonacea). In Vitro Cell Dev Biol 23:297–302

    Google Scholar 

  • Kopecky EJ, Ostrander GK (1999) Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol Anim 35:616–624

    CAS  PubMed  Google Scholar 

  • Kortschak RD, Samuel G, Saint R, Miller DJ (2003) EST analysis of the cnidarian Acropora millepora reveals extensive gene loss and rapid sequence divergence in the model invertebrates. Curr Biol 13:2190–2195

    CAS  PubMed  Google Scholar 

  • Martindale MQ, Finnerty JR, Henry JQ (2002) The radiata and the evolutionary origins of the bilaterian body plan. Mol Phylogenet Evol 24:358–365

    Article  PubMed  Google Scholar 

  • Mitterer RM (1978) Amino acid composition and metal binding capability of the skeleton proteins of corals. Bull Mar Sci 28:173–180

    CAS  Google Scholar 

  • Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523

    CAS  Google Scholar 

  • Phillips JH (1961) Isolation and maintenance in tissue culture of coelenterate cell lines. In: Lenhoff HM, Loomis WF (eds) University of Miami Press, Coral Gables, pp 245–254

    Google Scholar 

  • Poncet J, Serpentini A, Thiebot B, Villers C, Bocquet J, Boucaud-Camou E, Lebel J (2000) In vitro synthesis of proteoglycans and collagen in primary cultures of mantle cells from the nacreous mollusk, Haliotis tuberculata: a new model for study of molluscan extracellular matrix. Mar Biotechnol 2:387–398

    CAS  PubMed  Google Scholar 

  • Reynaud-Vaganay S, Gattuso JP, Cuif JP, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal delta18O as a function of temperature. Mar Ecol Prog Ser 180:121–130

    CAS  Google Scholar 

  • Rinkevich B (1999) Cell cultures from marine invertebrates: obstacles, new approaches and recent improvements. J Biotechnol 70:133–153

    Article  CAS  Google Scholar 

  • Tambutté E, Allemand D, Bourge I, Gattuso JP, Jaubert J (1995) An improved 45Ca protocol for investigating physiological mechanisms in coral calcification. Mar Biol 122:453–459

    Article  Google Scholar 

  • Tambutté E, Allemand D, Mueller E, Jaubert J (1996) A compartmental approach to the mechanism of calcification in hermatypic corals. J Exp Biol 199:1029–1041

    PubMed  Google Scholar 

  • Volpi N (2002) Influence of charge density, sulfate group position and molecular mass on adsorption of chondroitin sulfate onto coral. Biomaterials 23(14):3015–3022

    Article  CAS  PubMed  Google Scholar 

  • Wainwright SA (1963) Skeletal organization in the coral Pocillopora damicornis. Q J Microsc Sci 104:169–183

    Google Scholar 

  • Weiner S (1984) Organization of organic matrix components in mineralized tissues. Amer Zool 24:945–951

    CAS  Google Scholar 

  • Wheeler AP, Sikes CS (1984) Regulation of carbonate calcification by organic matrix. Amer Zool 24:933–944

    CAS  Google Scholar 

  • Young SD (1971a) Organic matrices associated with CaCO3 skeletons of several species of hermatypic corals. In: Lenhoff HM, Muscatine L, Davis LV (eds) University Press of Hawaii, Honolulu, pp 260–264

    Google Scholar 

  • Young SD (1971b) Organic material from scleractinian coral skeletons. I. Variation in composition between several species. Comp Biochem Physiol 40B:113–120

    Google Scholar 

Download references

Acknowledgements

We are grateful to Dominique Desgré for coral maintenance. We thank Professor Ramon Serrano from the University of Valencia for providing the membrane antibody. We thank Professor Jean-Pierre Cuif from the University of Orsay (Paris), Professor Patrick Payan from the University of Nice-Sophia Antipolis, Dr Lucilia Pereira-Mouriès and Dr Marshall Hayes for fruitful discussions and improvements to the manuscript. This study was conducted as part of the Centre Scientifique de Monaco 2000–2004 research program, supported by the Government of the Principality of Monaco.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvie Tambutté.

Additional information

Communicated by Biological Editor H.R. Lasker

Rights and permissions

Reprints and permissions

About this article

Cite this article

Puverel, S., Tambutté, E., Zoccola, D. et al. Antibodies against the organic matrix in scleractinians: a new tool to study coral biomineralization. Coral Reefs 24, 149–156 (2005). https://doi.org/10.1007/s00338-004-0456-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00338-004-0456-0

Keywords

Navigation