Coral Reefs

, Volume 23, Issue 4, pp 539–546 | Cite as

Effect of pCO2 and temperature on the boron isotopic composition of the zooxanthellate coral Acropora sp.

  • Stéphanie ReynaudEmail author
  • N. Gary Hemming
  • Anne Juillet-Leclerc
  • Jean-Pierre Gattuso


Culture experiments were carried out with Acropora sp. (a branching scleractinian coral) in seawater at two pCO2 conditions (438 and 725 µatm) and two temperatures (25 and 28 °C) in order to establish the pH and temperature dependence of the boron isotopic composition of the skeleton. A clear pCO2 effect, but no temperature effect, on the coral boron isotope composition is seen. For corals cultured at “normal pCO2” (438 µatm), the δ11B of the skeleton was 24.0±0.2‰ at 25 °C, and 23.9±0.3‰ at 28 °C. The values of δ11B measured for corals cultured at higher pCO2 (725 µatm) were lower: 22.5±0.1‰, and 22.8±0.1‰ at 25 and 28 °C, respectively. The δ11B of corals cultivated at both high and normal pCO2 conditions are consistent with a dominant pH control, and are very close to that calculated from theoretical considerations. Thus, the corals do not seem to significantly alter ambient seawater for calcification with respect to pH. Co-variation between boron and carbon isotope values is explored.


Corals Skeleton δ11Boron Culture Temperature pCO2 



Thanks are due to H. Spero for the δ13C seawater analysis, to P. Joannot, T. Corrège, and G. Cabioch for providing an Acropora colony from New Caledonia. We are grateful to N. Leclercq for his help in coral culture, to N. Lebec for her help with mass spectrometry, and to B. Hönisch for valuable discussions. Thanks are also due to four anonymous referees and to A. Grottoli for their constructive comments. Partial support for this research was provided by the National Science Foundation grant #OCE 00-83061.


  1. Boiseau M, Juillet-Leclerc A (1997) H2O2 treatment of recent coral aragonite: oxygen and carbon isotopic implications. Chem Geol 143:171–180CrossRefGoogle Scholar
  2. Borowitzka MA (1981) Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Mar Biol 62:17–23Google Scholar
  3. CDIAC (2003) Carbon Dioxide Information Analysis Center (
  4. Craig H (1957) Isotopic standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochim Cosmochim Acta 12:133–149CrossRefGoogle Scholar
  5. Gaillardet J, Allègre C (1995) Boron isotopic compositions of corals: seawater or diagenesis record? Earth Planet Sci Let136:665–676CrossRefGoogle Scholar
  6. Gattuso J-P, Allemand D, Frankignoulle M (1999) Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am Zool 39:160–183Google Scholar
  7. Hemming NG, Hanson GN (1992) Boron isotopic composition and concentration in modern marine carbonates. Geochim Cosmochim Acta 56:537–543CrossRefGoogle Scholar
  8. Hemming NG, Hanson GN (1994) A procedure for the analysis of boron by negative thermal ionization mass spectrometry. Chem Geol114:147–156Google Scholar
  9. Hemming NG, Reeder RJ, Hanson GN (1995) Mineral/fluid partitioning and isotopic fractionation of boron in synthetic calcium carbonate. Geochim Cosmochim Acta 59: 371–379CrossRefGoogle Scholar
  10. Hemming NG, Guilderson TP, Fairbanks RH (1998) Seasonal variations in the boron isotopic composition of coral: a productivity signal? Global Biogeochem Cycles 12:581–586CrossRefGoogle Scholar
  11. Hershey JP, Fernandez M, Milne PJ, Millero FJ (1986) The ionisation of boric acid in NaCl, Na-Ca-Cl, and Na-Mg-Cl solutions at 25 °C. Geochim Cosmochim Acta 50:143–148CrossRefGoogle Scholar
  12. Invers O, Romero J, Pérez M (1997) Effects of pH on seagrass photosynthesis: a laboratory and field assessment. Aquat Bot 59:185–194CrossRefGoogle Scholar
  13. Kakihana H, Kotaka M, Satoh S, Nomura M, Okamoto M (1977) Fundamental studies on the ion-exchange separation of boron isotopes. Bull Chem Soc Jpn 50(1):158–163Google Scholar
  14. Kühl M, Cohen Y, Dalsgaard T, Jørgensenm BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors of O2, pH and light. Mar Ecol Prog Ser 117:159–172Google Scholar
  15. Leclercq N, Gattuso J-P, Jaubert J (2002) Primary production, respiration, and calcification of a coral reef mesocosm under increased CO2 partial pressure. Limnol Oceanogr 47(2):558–564Google Scholar
  16. Lécuyer C, Grandjean P, Reynard B, Albarède F, Telouk P (2002) 11B/10B analysis of geological materials by ICP-MS Plasma 54: application to the boron fractionation between brachiopod calcite and seawater. Chem Geol 186:45–55CrossRefGoogle Scholar
  17. Lemarchand D, Gaillardet J, Léwin É, Allègre CJ (2000) The influence of rivers on marine boron isotopes and implications for reconstructing past ocean pH. Nature 408:951–954CrossRefPubMedGoogle Scholar
  18. Palmer MR, Pearson PN, Cobb SJ (1998) Reconstructing past ocean pH-depth profiles. Science 282:1468–1471CrossRefPubMedGoogle Scholar
  19. Pearson PN, Palmer MR (1999) Middle Eocene seawater pH and atmospheric carbon dioxide concentrations. Science 284:1824–1826CrossRefPubMedGoogle Scholar
  20. Petit JR, Jouzel J, Raynaud D, Barkov NI, Barnola JM, Basile I, Bender M, Chappellaz J, Davis M, Delaygu G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pépin L, Ritz C, Saltzman E, Stievenard M (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  21. Reynaud S, Leclercq N, Romaine-Lioud S, Ferrier-Pagès C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Global Change Biol 9:1660–1668CrossRefGoogle Scholar
  22. Reynaud-Vaganay S, Gattuso J-P, Cuif J-P, Jaubert J, Juillet-Leclerc A (1999) A novel culture technique for scleractinian corals: application to investigate changes in skeletal δ18O as a function of temperature. Mar Ecol Prog Ser 180:121–130Google Scholar
  23. Sanyal A, Hemming NG, Hanson G, Broecker WS (1995) Evidence for a higher pH in the glacial ocean from boron isotopes in foraminifera. Nature 373:234–236CrossRefGoogle Scholar
  24. Sanyal A, Hemming NG, Broecker WS, Lea DW (1996) Oceanic pH control on the boron isotopic composition of foraminifera: evidence from culture experiments. Paleoceanography 11:513–517CrossRefGoogle Scholar
  25. Sanyal A, Nugent M, Reeder RJ, Bijma J (2000) Seawater pH control on the boron isotopic composition of calcite: evidence from inorganic calcite precipitation experiments. Geochim Cosmochim Acta 64:1551–1555CrossRefGoogle Scholar
  26. Sanyal A, Bijma J, Spero H, Lea DW (2001) Empirical relationship between pH and the boron isotopic composition of Globigerinoides sacculifer: implications for the boron isotope paleo-pH proxy. Paleoceanography 16:515–519CrossRefGoogle Scholar
  27. Schneider K, Erez J (2000) Effects of carbonate chemistry on coral calcification, and symbiotic algae photosynthesis and isotopic fractionation. AGU/Ocean Sciences Meet, San Antonio, TX, Abstr, p 97Google Scholar
  28. Spero HJ, Bijma J, Lea DW, Bemis BE (1997) Effect of seawater carbonate concentration on foraminiferal carbon and oxygen isotopes. Nature 390:497–500CrossRefGoogle Scholar
  29. Spivack AJ, You CF, Smith HJ (1993) Foraminiferal boron isotope ratios as a proxy for surface ocean pH over the past 21 Myr. Nature 363:149–151CrossRefGoogle Scholar
  30. Vengosh A, Kolodny Y, Starinsky A, Chivas AR, McCulloch MT (1991) Coprecipitation and isotopic fractionation of boron in modern biogenic carbonates. Geochim Cosmochim Acta 55:2901–2910Google Scholar
  31. Zeebe RE, Wolf-Gladrow D (2001) CO2 in seawater: equilibrium, kinetics, isotopes. Elsevier, Amsterdam, Oceanography Series 65:1–346Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • Stéphanie Reynaud
    • 1
    Email author
  • N. Gary Hemming
    • 2
    • 3
  • Anne Juillet-Leclerc
    • 4
  • Jean-Pierre Gattuso
    • 5
  1. 1.Centre Scientifique de MonacoMonacoPrincipality of Monaco
  2. 2.Queens College School of Earth and Environmental SciencesFlushingUSA
  3. 3.Lamont-Doherty Earth Observatory of Columbia UniversityPalisadesUSA
  4. 4.Laboratoire des Sciences du Climat et de l’EnvironnementLaboratoire mixte CNRS-CEAGif-sur-Yvette CedexFrance
  5. 5.Laboratoire d’Océanographie, UMR 7093CNRS-Université de Paris 6Villefranche-sur-mer CedexFrance

Personalised recommendations