Skip to main content

Physische Aktivität: genetische Gewebekommunikation Basis präventiver Wirkungen

Physical activity: genetic tissue communication basis of preventive effects

This is a preview of subscription content, access via your institution.

Literatur

  1. Darkwah S, Park EJ, Myint PK, Ito A, Appiah MG, Obeng G, Kawamoto E, Shimaoka M (2021) Potential roles of muscle-derived extracellular vesicles in remodeling cellular microenvironment: proposed implications of the exercise-induced Myokine, Irisin. Front Cell Dev Biol 9:634853. https://doi.org/10.3389/fcell.2021.634853

    Article  PubMed  PubMed Central  Google Scholar 

  2. Darragh IAJ, O’Driscoll L, Egan B (2021) Exercise training and circulating small extracellular vesicles: appraisal of methodological approaches and current knowledge. Front Physiol. https://doi.org/10.3389/fphys.2021.738333

    Article  PubMed  PubMed Central  Google Scholar 

  3. Estébanez B, Jiménez-Pavón D, Huang CJ, Cuevas MJ, González-Gallego J (2021) Effects of exercise on exosome release and cargo in in vivo and ex vivo models: A systematic review. J Cell Physiol 236(5):3336–3353. https://doi.org/10.1002/jcp.30094

    CAS  Article  PubMed  Google Scholar 

  4. Fonseka P, Marzan AL, Mathivanan S (2021) Introduction to the community of extracellular vesicles. Subcell Biochem 97:3–18. https://doi.org/10.1007/978-3-030-67171-6_1

    CAS  Article  PubMed  Google Scholar 

  5. Fuller OK, Whitham M, Mathivanan S, Febbraio MA (2020) The protective effect of exercise in neurodegenerative diseases: the potential role of extracellular vesicles. Cells 9(10):2182. https://doi.org/10.3390/cells9102182

    CAS  Article  PubMed Central  Google Scholar 

  6. Garai K, Adam Z, Herczeg R, Banfai K, Gyebrovszki A, Gyenesei A, Pongracz JE, Wilhelm M, Kvell K (2021) Physical activity as a preventive lifestyle intervention acts through specific exosomal miRNA species-evidence from human short- and long-term pilot studies. Front Physiol 12:658218. https://doi.org/10.3389/fphys.2021.658218

    Article  PubMed  PubMed Central  Google Scholar 

  7. Hoshino A, Costa-Silva B, Shen TL, Rodrigues G, Hashimoto A, Tesic MM, Molina H, Kohsaka S, Di Giannatale A, Ceder S, Singh S, Williams C, Soplop N, Uryu K, Pharmer L, King T, Bojmar L, Davies AE, Ararso Y, Zhang T, Zhang H, Hernandez J, Weiss JM, Dumont-Cole VD, Kramer K, Wexler LH, Narendran A, Schwartz GK, Healey JH, Sandstrom P, Labori KJ, Kure EH, Grandgenett PM, Hollingsworth MA, de Sousa M, Kaur S, Jain M, Mallya K, Batra SK, Jarnagin WR, Brady MS, Fodstad O, Muller V, Pantel K, Minn AJ, Bissell MJ, Garcia BA, Kang Y, Rajasekhar VK, Ghajar CM, Matei I, Peinado H, Bromberg J, Lyden D (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335. https://doi.org/10.1038/nature15756

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  8. Liu T, Zhang Q, Zhang J, Li C, Miao YR, Lei Q, Li Q, Guo AY (2019) EVmiRNA: A database of miRNA profiling in extracellular vesicles. Nucleic Acids Res 47:D89–D93. https://doi.org/10.1093/nar/gky985

    CAS  Article  PubMed  Google Scholar 

  9. O’Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO (2020) RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol 21(10):585–606. https://doi.org/10.1038/s41580-020-0251-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Pardo F, Villalobos-Labra R, Sobrevia B, Toledo F, Sobrevia L (2018) Extracellular vesicles in obesity and diabetes mellitus. Mol Aspects Med 60:81–91. https://doi.org/10.1016/j.mam.2017.11.010

    CAS  Article  PubMed  Google Scholar 

  11. Picca A, Beli R, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, Bucci C, Guerra F, Marzetti E (2020) Older adults with physical frailty and sarcopenia show increased levels of circulating small extracellular vesicles with a specific mitochondrial signature. Cells 9(4):973. https://doi.org/10.3390/cells9040973

    CAS  Article  PubMed Central  Google Scholar 

  12. Valentino TR, Rule BD, Mobley CB, Nikolova-Karakashian M, Vechetti IJ (2021) Skeletal muscle cell growth alters the lipid composition of extracellular vesicles. Membranes 11(8):619. https://doi.org/10.3390/membranes11080619

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Wang W, Li M, Chen Z, Xu L, Chang M, Wang K, Deng C, Gu Y, Zhou S, Shen Y, Tao F, Sun H (2022) Biogenesis and function of extracellular vesicles in pathophysiological processes skeletal muscle atrophy. Biochem Pharmacol. https://doi.org/10.1016/j.bcp.2022.114954 (Online im Druck)

    Article  PubMed  Google Scholar 

  14. Yue B, Yang H, Wang J, Ru W, Wu J, Huang Y, Lan X, Lei C, Chen H (2020) Exosome biogenesis, secretion and function of exosomal miRNAs in skeletal muscle myogenesis. Cell Prolif 53(7):e12857. https://doi.org/10.1111/cpr.12857

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. You Y, Ikezu T (2019) Emerging roles of extracellular vesicles in neurodegenerative disorders. Neurobiol Dis 130:104512. https://doi.org/10.1016/j.nbd.2019.104512

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube.

Ethics declarations

Interessenkonflikt

W. Laube gibt an, dass kein Interessenkonflikt besteht.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laube, W. Physische Aktivität: genetische Gewebekommunikation Basis präventiver Wirkungen. Manuelle Medizin 60, 169–172 (2022). https://doi.org/10.1007/s00337-022-00889-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00337-022-00889-9