Skip to main content

Mentale Gesundheit und physische Aktivität

Mental health and physical activity

Zusammenfassung

Die Epigenetik steht für „gebahnte“ oder „gehemmte“ Adaptationen. So ist bei Patienten physische Aktivität zunächst ein „Training der Trainierbarkeit“. Myokine der aktiven Muskulatur prägen die Entwicklung und Erhaltung des Gehirns wesentlich mit. Kognitive Leistungen werden gefördert. Inaktivität hat gegenteilige Wirkungen. Das psychophysische Leistungsverhalten leidet und es kann eine Disposition für zentrale Sensibilisierungen entstehen. Die Muskelaktivität ist das Fundament für einen guten Funktionsstatus des Gehirns selbst sowie der peripheren Gewebe und Organe.

Abstract

Epigenetics stands for “facilitated” or “inhibited” adaptations. In the case of patients, physical activity is initially a “training of trainability”. Myokines of the active muscles have a major impact on the development and maintenance of the brain. Cognitive performance is promoted. Inactivity has the opposite effect. The psychophysical performance behavior suffers and a disposition for central sensitizations can arise. Muscle activity is the foundation for a good functional status of the brain as well as of the peripheral tissues and organs.

This is a preview of subscription content, access via your institution.

Abb. 1

Abbreviations

BDNF:

„Brain-derived neurotrophic factor“

DNA:

„Deoxyribonucleic acid“

IL:

Interleukin

MIF:

„Macrophage migration inhibitory factor“

mRNA:

„Messenger ribonucleic acid“

TNF:

Tumornekrosefaktor

VEGF:

„Vascular endothelial growth factor“

Literatur

  1. 1.

    Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, Correia JC, Izadi M, Bhat M, Schuppe-Koistinen I, Pettersson AT, Ferreira DMS, Krook A, Barres R, Zierath JR, Erhardt S, Lindskog M, Ruas JL (2014) Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell 159(1):33–45. https://doi.org/10.1016/j.cell.2014.07.051

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Algaidi SA, Eldomiaty MA, Elbastwisy YM, Almasry SM, Desouky MK, Elnaggar AM (2019) Effect of voluntary running on expression of myokines in brains of rats with depression. Int J Immunopathol Pharmacol 33:2058738419833533. https://doi.org/10.1177/2058738419833533

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    Barrès R, Yan J, Egan B, Treebak JT, Rasmussen M, Fritz T, Caidahl K, Krook A, O’Gorman DJ, Zierath JR (2012) Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab 15(3):405–411. https://doi.org/10.1016/j.cmet.2012.01.001

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    Beeri MS, Sonnen J (2016) Brain BDNF expression as a biomarker for cognitive reserve against Alzheimer disease progression. Neurology 86:702–703

    Article  Google Scholar 

  5. 5.

    Beltran Valls MR, Dimauro I, Brunelli A, Tranchita E, Ciminelli E, Caserotti P, Duranti G, Sabatini S, Parisi P, Parisi A, Caporossi D (2014) Explosive type of moderate-resistance training induces functional, cardiovascular, and molecular adaptations in the elderly. AGE 36(2):759–772. https://doi.org/10.1007/s11357-013-9584-1

    Article  PubMed  Google Scholar 

  6. 6.

    Biddle SJ, Asare M (2011) Physical activity and mental health in children and adolescents: a review of reviews. Br J Sports Med 45(11):886–895. https://doi.org/10.1136/bjsports-2011-090185

    Article  PubMed  Google Scholar 

  7. 7.

    Brown BM, Peiffer JJ, Martins RN (2013) Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry 18:864–874

    CAS  Article  Google Scholar 

  8. 8.

    Cassilhas RC, Lee KS, Fernandes J, Oliveira MG, Tufik S, Meeusen R, de Mello MT (2012) Spatial memory is improved by aerobic and resistance exercise through divergent molecular mechanisms. Neuroscience 202:309–317

    CAS  Article  Google Scholar 

  9. 9.

    Castelli DM, Hillman CH, Buck SM, Erwin HE (2007) Physical fitness and academic achievement in third- and fifth-grade students. J Sport Exerc Psychol 29:239–252

    Article  Google Scholar 

  10. 10.

    Chaddock-Heyman L, Erickson KI, Chappell MA, Johnson CL, Kienzler C, Knecht A, Drollette ES, Raine LB, Scudder MR, Kao SC, Hillman CH, Kramer AF (2016) Aerobic fitness is associated with greater hippocampal cerebral blood flow in children. Dev Cogn Neurosci 20:52–58. https://doi.org/10.1016/j.dcn.2016.07.001

    Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Chaddock L, Erickson KI, Prakash RS, Kim JS, Voss MW, Vanpatter M, Pontifex MB, Raine LB, Konkel A, Hillman CH, Cohen NJ, Kramer AF (2010) A neuroimaging investigation of the association between aerobic fitness, hippocampal volume, and memory performance in preadolescent children. Brain Res 1358:172–183. https://doi.org/10.1016/j.brainres.2010.08.049

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Coelho FG, Vital TM, Stein AM et al (2014) Acute aerobic exercise increases brain-derived neurotrophic factor levels in elderly with Alzheimer’s disease. J Alzheimers Dis 39:401–408

    CAS  Article  Google Scholar 

  13. 13.

    Creer DJ, Romberg C, Saksida LM, van Praag H, Bussey TJ (2010) Running enhances spatial pattern separation in mice. Proc Natl Acad Sci U S A 107(5):2367–2372. https://doi.org/10.1073/pnas.0911725107

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    da Silva IRV, de Araujo CLP, Dorneles GP, Peres A, Bard AL, Reinaldo G, Teixeira PJZ, Lago PD, Elsner VR (2017) Exercise-modulated epigenetic markers and inflammatory response in COPD individuals: a pilot study. Respir Physiol Neurobiol 242:89–95. https://doi.org/10.1016/j.resp.2017.04.004

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    De Assis GG, Gasanov EV, de Sousa MBC, Kozacz A, Murawska-Cialowicz E (2018) Brain derived neutrophic factor, a link of aerobic metabolism to neuroplasticity. J Physiol Pharmacol 69:351–358

    Google Scholar 

  16. 16.

    Denham J, O’Brien BJ, Marques FZ, Charchar FJ (1985) Changes in the leukocyte methylome and its effect on cardiovascular-related genes after exercise. J Appl Physiol 118(4):475–488. https://doi.org/10.1152/japplphysiol.00878.2014

    CAS  Article  Google Scholar 

  17. 17.

    Denham J, Marques FZ, Bruns EL, O’Brien BJ, Charchar FJ (2016) Epigenetic changes in leukocytes after 8 weeks of resistance exercise training. Eur J Appl Physiol 116(6):1245–1253. https://doi.org/10.1007/s00421-016-3382-2

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Denham J (2018) Exercise and epigenetic inheritance of disease risk. Acta Physiol. https://doi.org/10.1111/apha.12881

    Article  Google Scholar 

  19. 19.

    de Poli RAB, Lopes VHF, Lira FS, Zagatto AM, Jimenez-Maldonado A, Antunes BM (2021) Peripheral BDNF and psycho-behavioral aspects are positively modulated by high-intensity intermittent exercise and fitness in healthy women. Sci Rep 11(1):4113. https://doi.org/10.1038/s41598-021-83072-9

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Di Liegro CM, Schiera G, Proia P, Di Liegro I (2019) Physical activity and brain health. Genes 10(9):720–717. https://doi.org/10.3390/genes10090720

    CAS  Article  PubMed Central  Google Scholar 

  21. 21.

    Dimauro I, Scalabrin M, Fantini C, Grazioli E, Beltran Valls MR, Mercatelli N, Parisi A, Sabatini S, Di Luigi L, Caporossi D (2016) Resistance training and redox homeostasis: Correlation with age-associated genomic changes. Redox Biol 10:34–44. https://doi.org/10.1016/j.redox.2016.09.008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Eldomiaty MA, Almasry SM, Desouky MK, Algaidi SA (1657) Voluntary running improves depressive behaviours and the structure of the hippocampus in rats: A possible impact of myokines. Brain Res. https://doi.org/10.1016/j.brainres.2016.12.001

  23. 23.

    Eldomiaty MA, Elayat A, Ali S, Algaidi S, Elnaggar M (2020) Beneficial effects of voluntary over forced exercise on skeletal muscle structure and myokines’ expression. Folia Morphol 79(2):350–358. https://doi.org/10.5603/FM.a2019.0131

    CAS  Article  Google Scholar 

  24. 24.

    Erickson KI, Prakash RS, Voss MW, Chaddock L, Hu L, Morris KS, White SM, Wojcicki TR, McAuley E, Kramer AF (2009) Aerobic fitness associated with hippocampal volume in elderly humans. Hippocampus 19:1030–1039. https://doi.org/10.1002/hipo.20547

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Erickson KI, Voss MW, Prakash RS, Basak C, Szabo A, Chaddock L, Kim JS, Heo S, Alves H, White SM, Wojcicki TR, Mailey E, Vieira VJ, Martin SA, Pence BD, Woods JA, McAuley E, Kramer AF (2011) Exercise training increases size of hippocampus and improves memory. Proc Natl Acad Sci U S A 108:3017–3022. https://doi.org/10.1073/pnas.1015950108

    Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Fabel K, Kempermann G (2008) Physical activity and the regulation of neurogenesis in the adult and aging brain. Neuromolecular Med 10(2):59–66. https://doi.org/10.1007/s12017-008-8031-4

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Farmer J, Zhao X, van Praag H, Wodtke K, Gage FH, Christie BR (2004) Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71–79. https://doi.org/10.1016/j.neuroscience.2003.09.029

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Fernandes J, Arida RM, Gomez-Pinilla F (2017) Physical exercise as an epigenetic modulator of brain plasticity and cognition. Neurosci Biobehav Rev 80:443–456

    CAS  Article  Google Scholar 

  29. 29.

    Frank F (2003) Das metabolische Syndrom, Arteriosklerose und degenerative Erkrankung des Stütz- und Bewegungsapparates. Arbeitsmed Sozialmed Umweltmed 38:31–37

    Google Scholar 

  30. 30.

    Godziuk K, Prado CM, Woodhouse LJ, Forhan M (2018) The impact of sarcopenic obesity on knee and hip osteoarthritis: a scoping review. BMC Musculoskelet Disord 19(1):271. https://doi.org/10.1186/s12891-018-2175-7

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Goodman R (1997) The strengths and difficulties questionnaire: a research note. J Child Psychol Psychiatry 38(5):581–586. https://doi.org/10.1111/j.1469-7610.1997.tb01545.x

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Griffin EW, Bechara RG, Birch AM, Kelly AM (2009) Exercise enhances hippocampal-dependent learning in the rat: evidence for a BDNF-related mechanism. Hippocampus 19:973–980. https://doi.org/10.1002/hipo.20631

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Grygiel-Górniak B, Puszczewicz M (2017) A review on irisin, a new protagonist that mediates muscle-adipose-bone-neuron connectivity. Eur Rev Med Pharmacol Sci 21(20):4687–4693

    PubMed  Google Scholar 

  34. 34.

    Guiney H, Machado L (2013) Benefits of regular aerobic exercise for executive functioning in healthy populations. Psychon Bull Rev 20:73–86. https://doi.org/10.3758/s13423-012-0345-4

    Article  PubMed  Google Scholar 

  35. 35.

    Herting MM, Nagel BJ (2012) Aerobic fitness relates to learning on a virtual Morris Water Task and hippocampal volume in adolescents. Behav Brain Res 233:517–525. https://doi.org/10.1016/j.bbr.2012.05.012

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Hirsch MA, van Wegen EEH, Newman MA, Heyn PC (2018) Exercise-induced increase in brain-derived neurotrophic factor in human Parkinson’s disease: a systematic review and meta-analysis. Transl Neurodegener 7:7. https://doi.org/10.1186/s40035-018-0112-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hötting K, Röder B (2013) Beneficial effects of physical exercise on neuroplasticity and cognition. Neurosci Biobehav Rev 37(9 Pt B):2243–2257. https://doi.org/10.1016/j.neubiorev.2013.04.005

    Article  PubMed  Google Scholar 

  38. 38.

    Hunter DJ, James L, Hussey B, Wadley AJ, Lindley MR, Mastana SS (2019) Impact of aerobic exercise and fatty acid supplementation on global and gene-specific DNA methylation. Epigenetics 14:294–309

    Article  Google Scholar 

  39. 39.

    Karl C (2005) Die Rolle des Doublecortin-Gens in neuronalen Vorläuferzellen während Migration und Neurogenese. Dissertation. Universität Regensburg, Regensburg

    Google Scholar 

  40. 40.

    Kempermann G, Jessberger S, Steiner B, Kronenberg G (2004) Milestones of neuronal development in the adult hippocampus. Trends Neurosci 27(8):447–452. https://doi.org/10.1016/j.tins.2004.05.013

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Kim S, Choi JY, Moon S, Park DH, Kwak HB, Kang JH (2019) Roles of myokines in exercise-induced improvement of neuropsychiatric function. Pflugers Arch 471(3):491–505. https://doi.org/10.1007/s00424-019-02253-8

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kim G, Kim JH (2020) Impact of skeletal muscle mass on metabolic health. Endocrinol Metab 35(1):1–6. https://doi.org/10.3803/EnM.2020.35.1.1

    Article  Google Scholar 

  43. 43.

    Kronenberg G, Bick-Sander A, Bunk E, Wolf C, Ehninger D, Kempermann G (2006) Physical exercise prevents age-related decline in precursor cell activity in the mouse dentate gyrus. Neurobiol Aging 27(10):1505–1513. https://doi.org/10.1016/j.neurobiolaging.2005.09.016

    Article  PubMed  Google Scholar 

  44. 44.

    Larson EB, Wang L, Bowen JD, McCormick WC, Teri L, Crane P, Kukull W (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144:73–81

    Article  Google Scholar 

  45. 45.

    Laube W (2013) Muskelaktivität: Prägung des ZNS und endokrine Funktion – somatische oder degenerativ-nozizeptive Körperstruktur. Man Med 51:141–150. https://doi.org/10.1007/s00337-012-0989-1

    Article  Google Scholar 

  46. 46.

    Laube W (2020) Sensomotorik und Schmerz. Wechselwirkung von Bewegungsreizen und Schmerzempfinden. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  47. 47.

    Lauretani F, Meschi T, Ticinesi A, Maggio M (2017) „Brain-muscle loop“ in the fragility of older persons: from pathophysiology to new organizing models. Aging Clin Exp Res 29(6):1305–1311. https://doi.org/10.1007/s40520-017-0729-4

    Article  PubMed  Google Scholar 

  48. 48.

    Lautenschlager NT, Cox KL, Flicker L, Foster JK, van Bockxmeer FM, Xiao J, Greenop KR, Almeida OP (2008) Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: a randomized trial. JAMA 300:1027–1037. https://doi.org/10.1001/jama.300.9.1027

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Leger LA, Mercier D, Gadoury C, Lambert J (1988) The multistage 20 metre shuttle run test for aerobic fitness. J Sports Sci Summer 6(2):93–101. https://doi.org/10.1080/02640418808729800

    CAS  Article  Google Scholar 

  50. 50.

    Leuner B, Gould E (2010) Structural plasticity and hippocampal function. Annu Rev Psychol 61:111–113

    Article  Google Scholar 

  51. 51.

    Lista I, Sorrentino G (2010) Biological mechanisms of physical activity in preventing cognitive decline. Cell Mol Neurobiol 30:493–503

    CAS  Article  Google Scholar 

  52. 52.

    Mackay CP, Kuys SS, Brauer SG (2017) The effect of aerobic exercise on brain-derived neurotrophic factor in people with neurological disorders: a systematic review and meta-analysis. Neural Plast. https://doi.org/10.1155/2017/4716197

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Misra D, Fielding RA, Felson DT, Niu J, Brown C, Nevitt M, Lewis CE, Torner J, Neogi T (2019) MOST study: risk of knee osteoarthritis with obesity, sarcopenic obesity, and sarcopenia. Arthritis Rheumatol 71(2):232–237. https://doi.org/10.1002/art.40692

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Molnar E (2011) Long-term potentiation in cultured hippocampal neurons. Semin. Semin Cell Dev Biol 22(5):506–513. https://doi.org/10.1016/j.semcdb.2011.07.017

    CAS  Article  PubMed  Google Scholar 

  55. 55.

    Moon HY, Becke A, Berron D, Becker B, Sah N, Benoni G, Janke E, Lubejko ST, Greig NH, Mattison JA, Duzel E, van Praag H (2016) Running-induced systemic Cathepsin B secretion is associated with memory function. Cell Metab 24(2):332–340. https://doi.org/10.1016/j.cmet.2016.05.025

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Niederer I, Kriemler S, Zahner L, Bürgi F, Ebenegger V, Hartmann T, Meyer U, Schindler C, Nydegger A, Marques-Vidal P, Puder JJ (2009) Influence of a lifestyle intervention in preschool children on physiological and psychological parameters (Ballabeina): Study design of a cluster randomized controlled trial. BMC Public Health 9:94. https://doi.org/10.1186/1471-2458-9-94

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Niederer I, Kriemler S, Gut J, Hartmann T, Schindler C, Barral J, Puder JJ (2011) Relationship of aerobic fitness and motor skills with memory and attention in preschoolers (Ballabeina): a cross-sectional and longitudinal study. BMC Pediatr 11:34. https://doi.org/10.1186/1471-2431-11-34

    Article  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Nitert MD, Dayeh T, Volkov P, Elgzyri T, Hall E, Nilsson E, Yang BT, Lang S, Parikh H, Wessman Y, Weishaupt H, Attema J, Abels M, Wierup N, Almgren P, Jansson PA, Rönn T, Hansson O, Eriksson KF, Groop L, Ling C (2012) Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 61(12):3322–3332. https://doi.org/10.2337/db11-1653

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. 59.

    Nygaard H, Slettalokken G, Vegge G, Hollan I, Whist JE, Strand T, Ronnestad BR, Ellefsen S (2015) Irisin in blood increases transiently after single sessions of intense endurance exercise and heavy strength training. PLoS ONE 10:e121367

    Article  Google Scholar 

  60. 60.

    Palmer TD, Willhoite AR, Gage FH (2000) Vascular niche for adult hippocampal neurogenesis. J Comp Neurol 425:479–494

    CAS  Article  Google Scholar 

  61. 61.

    Park BS, Yoon JS (2013) Relative skeletal muscle mass is associated with development of metabolic syndrome. Diabetes Metab J 37:458–464

    Article  Google Scholar 

  62. 62.

    Park SH, Park JH, Song PS, Kim DK, Kim KH, Seol SH, Kim HK, Jang HJ, Lee JG, Park HY, Park J, Di Shin KJK, Moon YS (2013) Sarcopenic obesity as an independent risk factor of hypertension. J Am Soc Hypertens 7(6):420–425. https://doi.org/10.1016/j.jash.2013.06.002

    Article  PubMed  Google Scholar 

  63. 63.

    Park SH, Park JH, Park HY, Jang HJ, Kim HK, Park J, Shin KJ, Lee JG, Moon YS (2014) Additional role of sarcopenia to waist circumference in predicting the odds of metabolic syndrome. Clin Nutr 33(4):668–672. https://doi.org/10.1016/j.clnu.2013.08.008

    Article  PubMed  Google Scholar 

  64. 64.

    Pedersen BK (2009) The diseasome of physical inactivity and the role of myokines in muscle-fat cross talk. J Physiol 587:5559–5568

    CAS  Article  Google Scholar 

  65. 65.

    Pedersen BK (2019) Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol 15(7):383–392. https://doi.org/10.1038/s41574-019-0174-x

    Article  PubMed  Google Scholar 

  66. 66.

    Pillon NJ, Bilan PJ, Fink LN, Klip A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 304(5):E453–E465

    CAS  Article  Google Scholar 

  67. 67.

    Rasmussen P, Brassard P, Adser H, Pedersen MV, Leick L, Hart E, Secher NH, Pedersen BK, Pilegaard H (2009) Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol 94(10):1062–1069. https://doi.org/10.1113/expphysiol.2009.048512

    CAS  Article  PubMed  Google Scholar 

  68. 68.

    Ratel S, Blazevich AJ (2017) Are prepubertal children metabolically comparable to well-trained adult endurance athletes? Sports Med 47(8):1477–1485. https://doi.org/10.1007/s40279-016-0671-1

    Article  PubMed  Google Scholar 

  69. 69.

    Rodriguez-Ayllon M, Cadenas-Sánchez C, Estévez-López F, Muñoz NE, Mora-Gonzalez J, Migueles JH, Molina-García P, Henriksson H, Mena-Molina A, Martínez-Vizcaíno V, Catena A, Löf M, Erickson KI, Lubans DR, Ortega FB, Esteban-Cornejo I (2019) Role of physical activity and sedentary behavior in the mental health of preschoolers, children and adolescents: a systematic review and meta-analysis. Sports Med 49(9):1383–1410. https://doi.org/10.1007/s40279-019-01099-5

    Article  PubMed  Google Scholar 

  70. 70.

    Rowlands DS, Page RA, Sukala WR, Giri M, Ghimbovschi SD, Hayat I, Cheema BS, Lys I, Leikis M, Sheard PW, Wakefield SJ, Breier B, Hathout Y, Brown K, Marathi R, Orkunoglu-Suer FE, Devaney JM, Leiken B, Many G, Krebs J, Hopkins WG, Hoffman EP (2014) Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol Genomics 46(20):747–765. https://doi.org/10.1152/physiolgenomics.00024.2014

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Samy DM, Ismail CA, Nassra RA (2015) Circulating irisin concentrations in rat models of thyroid dysfunction—effect of exercise. Metabolism 64:804–813

    CAS  Article  Google Scholar 

  72. 72.

    Schenk A, Koliamitra C, Bauer CJ, Schier R, Schweiger MR, Bloch W, Zimmer P (2019) Impact of acute aerobic exercise on genome-wide DNA-methylation in natural killer cells‑a pilot study. Genes 10:380

    CAS  Article  Google Scholar 

  73. 73.

    Scisciola L, Fontanella RA, Surina CV, Paolisso G, Barbieri M (2021) Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life 11(2):173. https://doi.org/10.3390/life11020173

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. 74.

    Seaborne RA, Strauss J, Cocks M, Shepherd S, O’Brien TD, van Someren KA, Bell PG, Murgatroyd C, Morton JP, Stewart CE, Sharples AP (2018) Human skeletal muscle possesses an epigenetic memory of hypertrophy. Sci Rep 8(1):1898. https://doi.org/10.1038/s41598-018-20287-3

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Suwabe K, Hyodo K, Byun K, Ochi G, Yassa MA, Soya H (2017) Acute moderate exercise improves mnemonic discrimination in young adults. Hippocampus 27(3):229–234. https://doi.org/10.1002/hipo.22695

    Article  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Tidball JG, Villalta SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298(5):R1173–R1187

    CAS  Article  Google Scholar 

  77. 77.

    van Praag H, Kempermann G, Gage FH (1999a) Running increases cell proliferation and neurogenesisin the adult mouse dentate gyrus. Nat Neurosci 2:266–270

    Article  Google Scholar 

  78. 78.

    van Praag H, Christie BR, Sejnowski TJ, Gage FH (1999b) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci USA 96(23):13427–13431. https://doi.org/10.1073/pnas.96.23.13427

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    van Praag H (2008) Neurogenesis and exercise: past and future directions. Neuromolecular Med 10(2):128–140. https://doi.org/10.1007/s12017-008-8028-z

    CAS  Article  PubMed  Google Scholar 

  80. 80.

    Vaynman S, Ying Z, Gomez-Pinilla F (2003) Interplay between brain-derived neurotrophic factor and signal transduction modulators in the regulation of the effects of exercise on synaptic-plasticity. Neuroscience 122:647–657

    CAS  Article  Google Scholar 

  81. 81.

    Vivar C, Potter MC, van Praag H (2013) All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis. Curr Top Behav Neurosci 15:189–210

    CAS  Article  Google Scholar 

  82. 82.

    Wheatley C, Wassenaar T, Salvan P, Beale N, Nichols T, Dawes H, Johansen-Berg H (2020) Associations between fitness, physical activity and mental health in a community sample of young British adolescents: baseline data from the Fit to Study trial. Bmj Open Sport Exerc Med 6(1):e819. https://doi.org/10.1136/bmjsem-2020-000819

    Article  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Woelfel JR, Dudley-Javoroski S, Shields RK (2018) Precision physical therapy: exercise, the epigenome, and the heritability of environmentally modified traits. Phys Ther 98:946–952

    Article  Google Scholar 

  84. 84.

    World Health Organization (2011) Global recommendations on physical activity for health. 1.exercise. 2.life style. 3.health promotion. 4.chronic disease—prevention and control. 5.national health programs

    Google Scholar 

  85. 85.

    Wu CW, Chang YT, Yu L, Chen HI, Jen CJ, Wu SY, Lo CP, Kuo YM (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol 105:1585–1594. https://doi.org/10.1152/japplphysiol.90775.2008

    Article  PubMed  Google Scholar 

  86. 86.

    Zhang H, Lin S, Gao T, Zhong F, Cai J, Sun Y, Ma A (2018) Association between sarcopenia and metabolic syndrome in middle-aged and older non-obese adults: a systematic review and meta-analysis. Nutrients 10(3):364. https://doi.org/10.3390/nu10030364

    CAS  Article  PubMed Central  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Laube.

Ethics declarations

Interessenkonflikt

W. Laube gibt an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figureqr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Laube, W. Mentale Gesundheit und physische Aktivität. Manuelle Medizin (2021). https://doi.org/10.1007/s00337-021-00845-z

Download citation

Schlüsselwörter

  • Muskelkontraktion
  • Physische Inaktivität
  • BDNF
  • Gehirn
  • Funktionsstatus

Keywords

  • Muscle contraction
  • Physical inactivity
  • BDNF
  • Brain
  • Functional status