Manuelle Medizin

, 49:335 | Cite as

Der Zyklus Belastung – Adaptation

Grundlage für Struktur, Funktion, Leistungsfähigkeit und Gesundheit
Übersichten

Zusammenfassung

Der Organismus benötigt Belastung, um die Organe und ihr Zusammenspiel strukturell und funktionell zu entwickeln, zu erhalten und die Alterungsprozesse zu beeinflussen.

Zum Vollzug der Leistungsvorgabe, der Belastung, realisiert der Organismus einen biologischen Aufwand, die Beanspruchung, und es entsteht eine beanspruchungsspezifische Ermüdung. Essenziell für alle Erholungsprozesse (Restitution, Reparatur, Adaptation) sind die Beanspruchungen der anabolen hormonellen, parakrinen und autokrinen Systeme. Sie vermitteln alle strukturellen Vorgänge in der Erholung. Herausragend ist die Achse Wachstumshormon – insulinähnlicher Wachstumsfaktor der Leber, aber auch der Körperzellen und die Testosteronproduktion. Die Hormone sichern zunächst die restitutiven und reparativen Prozesse. Diese gehen fließend in die anabolen Vorgänge über. Sie repräsentieren das Ergebnis der Beanspruchung, zu erkennen an der Funktions- und Leistungsfähigkeit. Inaktivität führt zu einem negativen Zyklus, wodurch es zu Atrophie und Funktionsverlust bis hin zur Degeneration kommt. Der Zyklus ist auch in die Prävention und Therapie von Schmerzen involviert. Zum einen haben während der Bewegungsausführung sowohl die zentralen motorischen Efferenzen als auch die propriorezeptiven Afferenzen einen hemmenden Einfluss auf die schmerzrelevanten Neuronenpopulationen im Hinterhorn. Zum anderen beteiligen sich die sensomotorischen Gehirnareale mit Strukturveränderungen an der Chronifizierung des Schmerzes.

Schlüsselwörter

Sensomotorisches System Wachstumsfaktoren Biologische Adaptation Körperliche Leistungsfähigkeit Schmerz 

Cycle load – adaptation

Background for structure, function, performance and health

Abstract

The organism needs load to physiologically develop all tissues, organs and their coordinated functions in childhood and adolescence, to protect these structures and functions during midlife and, especially later, to delay aging processes.

In order to execute the planned performance or load the organism must realize a concrete biological effort, the physiological use, which results in load-specific fatigue and, finally, in termination of the use. The use-related stimulation of anabolic hormonal, paracrine and autocrine regulation systems is essential to all recovery processes (restitution, reparation, adaptation). It results in the production of growth factors of different families which mediate all structural changes in the recovery period. The anabolic hormone axis growth hormone, insulin-like growth factor of the liver (hormonal IGF-1) but also of different body cells (paracrine, autocrine function) as well as the stimulation of testosterone production (axis pituitary gland, gonads) are of paramount importance. After termination of the physiological use, these anabolic hormones secure all restitutive and reparative processes to compensate for consumed resources and repair structural damages in the early phase of recovery. These processes form a continuum with the anabolic structural adaptations. They represent the biological results of the physical load and can be recognized as increased function and capacity in both the preventive and the therapeutic sense as well as with regard to the influence on aging (delay of frailty). Inactivity leads to a vicious circle resulting in atrophy and thus loss of function up to degeneration. The cycle of load and adaptation is also involved in the prevention and therapy of pain. On the one hand central motor efferents of the corticospinal and other tracts as well as proprioceptive afferents and reafferents have a direct and indirect inhibitory impact on pain relevant neuron populations in the posterior horn of the spinal cord during the execution of a movement. On the other hand structural changes of cerebral structures highly relevant to the sensorimotor system are involved in the chronification of pain.

Keywords

Sensorimotor system Growth factors Biological adaptation Physical fitness Pain 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Adams GR (1998) The role of IGF-I in the regulation of skeletal muscle adaptation. In: Holloszy JR (Hrsg) Exercise and sport science reviews, Bd. 26. Williams & Wilkins, Baltimore, S 31–60Google Scholar
  2. 2.
    AdamsGR, McCue SA (1998) Localized infusion of IGF-I results in skeletal muscle hypertrophy in rats. J Appl Physiol 84:1716–1722Google Scholar
  3. 3.
    Baldwin KM, Haddad F (2002) Skeletal muscle plasticity: cellular and molecular responses tp altered physical activity paradigms. Am J Phys Med Rehabil 81:S40–S51PubMedCrossRefGoogle Scholar
  4. 4.
    Bengtson CP, Dick O, Bading H (2008) A quantitative method to assess extrasynaptic NMDA receptor function in the protective effect of synaptic activity against neurotoxicity. BMC Neurosci 24:9–11Google Scholar
  5. 5.
    Bickel CS, Slade JM, Haddad F et al (2003) Acute molecular responses of skeletal muscle to resistance exercise in able-bodied and spinal cord-injured subjects. J Appl Physiol 94:2255–2262PubMedGoogle Scholar
  6. 6.
    Binder DK, Scharfman HE (2004) Brain-derived neurotrophic factor. Growth Factors 22:123–131PubMedCrossRefGoogle Scholar
  7. 7.
    Bondy CA, Lee WH (1993) Patterns of insulin-like growth factor and IGF receptor gene expression in the brain. Functional implications. Ann N Y Acad Sci 692:33–43PubMedCrossRefGoogle Scholar
  8. 8.
    Borg G (1961) Perceived exertion in relation to physical work load and puls-rate. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:105–115Google Scholar
  9. 9.
    Borg G (1961) Interindividual scaling and perception of muscular force. Kungliga Fysiografisca Sallskapets I Lund Forhandlingar 31:117–125Google Scholar
  10. 10.
    Borg GA (1982) Psychophysical bases of perceived exertion. Med Sci Sports Exerc 14:377–381PubMedGoogle Scholar
  11. 11.
    Cadore EL, Lhullier FL, Brentano MA et al (2008) Hormonal responses to resistance exercise in long-term trained and untrained middle-aged men. J Strength Cond Res 22:1617–2624PubMedCrossRefGoogle Scholar
  12. 12.
    Chang HC, Yang YR, Wang PS et al (2011) IGF-I signaling for brain recovery and exercise ability in brain ischemic rats. Med Sci Sports Exerc 20 (im Druck)Google Scholar
  13. 13.
    Coelho FM, Pereira DS, Lustosa LP et al (2011) Physical therapy intervention (PTI) increases plasma brain-derived neurotrophic factor (BDNF) levels in non-frail and pre-frail elderly women. Arch Gerontol Geriatr 16. (im Druck)Google Scholar
  14. 14.
    Carro E, Spuch C, Trejo JL et al (2005) Choroid plexus megalinm is involved in neuroprotection by serum insulin-like growth factor I. J Neurosci 25:10884–10893PubMedCrossRefGoogle Scholar
  15. 15.
    Carro E, Trejo JL, Gomez-Isla T et al (2000) Serum insulin-like growth factor I regulates brain amyloid-beta levels. Nat Med 8:1390–1397CrossRefGoogle Scholar
  16. 16.
    Dunn SE (2000) Insulin-like growth factor I stimulates angiogenesis and production of vascular endothelial growth factor. Growth Horm IGF Res 10(Suppl A):4–42CrossRefGoogle Scholar
  17. 17.
    Fernandez AM, Gonzales de la Vega AG, Planas B, Torres-Aleman I (1999) Neuroprotective actions of peripherally administered insulin-like growth factor I in the injured olivo-cerebellar pathway. Eur J Neurosci 11:2019–2030PubMedCrossRefGoogle Scholar
  18. 18.
    García-Mesa Y, López-Ramos JC, Giménez-Llort L et al (2011) Physical exercise protects against Alzheimer’s disease in 3xTg-AD mice. J Alzheimers Dis 24:421–454PubMedGoogle Scholar
  19. 19.
    Goldspink G (2003) Gene expression in muscle in response to exercise. J Muscle Res Cell Motil 24:121–126PubMedCrossRefGoogle Scholar
  20. 20.
    Haddad F, Adams GR (2002) Selected contribution: acute cellular and molecular responses to resistance exercise. J Appl Physiol 93:394–403PubMedGoogle Scholar
  21. 21.
    Haddad F, Adams GR (2006) Aging-sensitive cellular and molecular mechanisms associated with skeletal muscle hypertrophy. J Appl Physiol 100:1188–1203PubMedCrossRefGoogle Scholar
  22. 22.
    Hameed M, Orrell RW, Cobbold M et al (2003) Expression of IGF-I splice variants in young and old human skeletal muscle after high resistance exercise. J Physiol 547:247–254PubMedCrossRefGoogle Scholar
  23. 23.
    Heinemeier KM, Olesen JL, Schjerling P et al (2007) Short-term strength training and the expression of myostatin and IGF-I isoforms in rat muscle and tendon: differential effects of specific contraction types. J Appl Physiol 102:573–581PubMedCrossRefGoogle Scholar
  24. 24.
    Hill M, Goldspink G (2003) Expression and splicing of the insulin-like growth factor gene in rodent muscle is associated with muscle satellite (stem) cell activation following local tissue damage. J Physiol 549:409–418PubMedCrossRefGoogle Scholar
  25. 25.
    Ide K, Secher NH (2000) Cerebral blood flow and metabolism during exercise. Prog Neurobiol 61:397–414PubMedCrossRefGoogle Scholar
  26. 26.
    Jones SW, Hill RJ, Krasney PA et al (2004) Disuse atrophy and exercise rehabilitation in humans profoundly affects the expression of genes associated with the regulation of skeletal muscle mass. FASEB J 18:1025–1027PubMedGoogle Scholar
  27. 27.
    Kavey RE, Daniels SR, Lauer RM et al (2003) American Heart Association guidelines for primary prevention of atherosclerotic cardiovascular disease beginning in childhood. American Heart Association. J Pediatr 142:368–372PubMedCrossRefGoogle Scholar
  28. 28.
    Kinni H, Guo M, Ding JY et al (2011) Cerebral metabolism after forced or voluntary physical exercise. Brain Res 146:48–55CrossRefGoogle Scholar
  29. 29.
    Künstlinger U (2004) Bewegungsmangel bei Kindern – Fakt oder Fiktion? 3. Konferenz des Clubs of Cologne, 4. 12. 2003 in Köln. Dtsch Z Sportmed 55:29–30Google Scholar
  30. 30.
    Kunz T (1993) Weniger Unfälle durch Bewegung: Mit Bewegungsspielen gegen Unfälle und Gesundheitsschäden bei Kindergartenkindern. Hofmann, SchorndorfGoogle Scholar
  31. 31.
    Kraemer WJ, Ratamess NA (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Med 35:339–361PubMedCrossRefGoogle Scholar
  32. 32.
    Laube W (1990) Zur Rückführung des vegetativ-chronotropen Tonus, der Erholung im neuromuskulären System und den Wechselbeziehungen zwischen beiden Funktionssystemen nach Auslösung einer identischen anaeroben Stoffwechselsituation durch verschiedene Belastungsarten. Dissertation B (Dr. med. sc.), Humboldt-Universität zu Berlin, Bereich Medizin Charité, Physiologisches InstitutGoogle Scholar
  33. 33.
    Laube W (Hrsg) (2009) Sensomotorisches System. Thieme, StuttgartGoogle Scholar
  34. 34.
    Laube W (2009) Physiologie der Hauptbeanspruchungen des sensomotorischen Systems. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, New York, S 165–227Google Scholar
  35. 35.
    Laube W (2009) Diagnostik der Leistungen des Sensomotorischen Systems: Koordination – Ausdauer – Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 228–274Google Scholar
  36. 36.
    Laube W (2009) Deadaptationsprozesse durch Inaktivität und Immobilisation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 370–374Google Scholar
  37. 37.
    Laube W (2009) Physiologie des Zyklus Belastung – Beanspruchung – Ermüdung – Erholung – Adapatation. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 499–555Google Scholar
  38. 38.
    Laube W (2009) Training der Sensomotorischen Hauptbeanspruchungsformen Koordination, Ausdauer und Kraft. In: Laube W (Hrsg) Sensomotorisches System. Thieme, Stuttgart, S 556–600 und 617–637Google Scholar
  39. 39.
    Lefaucheur J-P, Drouot X, Cunin P et al (2009) Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132:1463–1417PubMedCrossRefGoogle Scholar
  40. 40.
    Leite RD, Prestes J, Rosa C et al (2011) Acute effect of resistance training volume on hormonal responses in trained men. J Sports Med Phys Fitness 51:322–328PubMedGoogle Scholar
  41. 41.
    Lopez-Lopez C, LeRoith D, Torres-Aleman I (2004) Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proc Natl Acad Sci U S A 101:9833–9838PubMedCrossRefGoogle Scholar
  42. 42.
    Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Cortical reorganization during recovery from complex regional pain syndrome. Neurology 63:693–701Google Scholar
  43. 43.
    Matsakas A, Friedel A, Hertrampf T, Diel P (2005) Short-term endurance training results in a muscle-specific decrease of myostatin mRNA content in the rat. Acta Physiol Scand 183:299–307PubMedCrossRefGoogle Scholar
  44. 44.
    Matsakas A, Diel P (2005) The growth factor myostatin, a key regulator in skeletal muscle growth and homöostasis. Int J Sports Med 26:83–89PubMedCrossRefGoogle Scholar
  45. 45.
    Noble BJ, Robertson RJ (1996) The borg scale: development, administration, and experimental use. In: Noble BJ, Robertson RJ (Hrsg) Perceived exertion. Human Kinetics, Champaign, IL, S 59–92Google Scholar
  46. 46.
    Peyron R, Garcìa-Larrea L, Grègoire MC et al (1999) Haemodynamic brain responses to acute pain in humans. Brain 122:1765–1779PubMedCrossRefGoogle Scholar
  47. 47.
    Poehlman ET, Copeland KC (1990) Influence of physical activity on insulin-like growth factor-1 in healthy younger and older men. J Clin Endocrinol Metab 71:1468–1473PubMedCrossRefGoogle Scholar
  48. 48.
    Pritzlaff CJ, Wideman L, Weltman JY et al (1999) Impact of acute exercise intensity on pulsatile growth hormone release in men. J Appl Physiol 87:498–504PubMedGoogle Scholar
  49. 49.
    Radaka Z, Kanekob T, Taharab S et al (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38:17–23CrossRefGoogle Scholar
  50. 50.
    Raue U, Slivka D, Jemiolo B et al (2006) Myogenic gene expression at rest and following a bout of resistance exercise in young (18–30 Yr) and old (80–89 Yr) women. J Appl Physiol 101:53–59PubMedCrossRefGoogle Scholar
  51. 51.
    Rojas-Piloni G, Martínez-Lorenzana G, Condés-Lara M, Rodríguez-Jiménez J (2010) Direct sensorimotor corticospinal modulation of dorsal horn neuronal C-fiber responses in the rat. Brain Res 1351:104–114PubMedCrossRefGoogle Scholar
  52. 52.
    Sonntag WE, Lynch CD, Cooney PT, Hutchins PM (1997) Decreases in cerebral microvasculature with age are associated with the decline in growth hormone and insulin-like growth factor-I. Endocrinology 138:3515–3520PubMedCrossRefGoogle Scholar
  53. 53.
    Torres-Aleman I (2001) Serum neurotrophic factors and neuroprotective surveillance: focus on IGF-I. Mol Neurobiol 21:153–160CrossRefGoogle Scholar
  54. 54.
    Trejo JL, Carro E, Torres-Aleman I (2001) Circulating insulin like growth factor I mediates exercise-induced increases in the number of new neurons in the adult hippocampus. J Neurosci 21:1628–1634PubMedGoogle Scholar
  55. 55.
    Praag H van, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesisin the adult mouse dentate gyrus. Nat Neurosci 2:266–270PubMedCrossRefGoogle Scholar
  56. 56.
    Praag H van, Christie BR, Sejnowski TJ, Gage FH (1999) Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A 96:13427–13431PubMedCrossRefGoogle Scholar
  57. 57.
    Walsh NP, Gleeson M, Shephard RJ et al (2011) Position statement. Part one: Immune function and exercise. Exerc Immunol Rev 17:6–63PubMedGoogle Scholar
  58. 58.
    Zhang SJ, Buchthal B, Lau D et al (2011) A signaling cascade of nuclear calcium-CREB-ATF3 activated by synaptic NMDA receptors defines a gene repression module that protects against extrasynaptic NMDA receptor-induced neuronal cell death and ischemic brain damage. J Neurosci 31:4978–4990PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.-AltachÖsterreich

Personalised recommendations