Skip to main content
Log in

Genomic analysis of the mouse protamine 1, protamine 2, and transition protein 2 gene cluster reveals hypermethylation in expressing cells

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

To understand the role of chromatin structure in the expression of the mouse protamine 1, protamine 2, and transition protein 2 genes during spermatogenesis, we have examined the genomic organization of this cluster of “haploid-specific” genes. As seen in the human genome, protamine 2, transition protein 2, and approximately 2.8 kb of a CpG island, hereafter called CpG island-dTP2, were clustered in a small region. Methylation analyses of this region have demonstrated that i) unlike most other tissue-specific genes, the protamine 1, protamine 2, and transition protein 2 genes were located in a large methylated domain in round spermatids, the cell type where they are transcribed, ii) the protamine 1 gene was only partially methylated in somatic cells and in testes from 7-day-old mice, and iii) the approximately 2 kb upstream and downstream of the CpG island-dTP2 were only partially methylated in somatic tissues. DNase I analysis revealed the presence of at least five strong DNase I hypersensitive sites over the CpG island-dTP2 in somatic tissues, but not in germ cells, and sequence analysis indicated that the CpG island-dTP2 is homologous to a CpG island located approximately 10.6 kb downstream of the human transition protein 2 gene. Although the nature of a CpG island-dTP2 and the function of a CpG island-dTP2-containing somatic tissue-specific DNase I hypersensitive sites in close proximity to the germ cell-specific gene cluster are unclear, the “open” chromatin structure of the CpG island-dTP2 may be responsible for the partial methylation pattern of the flanking sequences including the transition protein 2 gene in somatic tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizawa A, Yoneyama T, Kazahari K, Ono M (1995) DNase I-hypersensitive sites in the chromatin of rat growth hormone gene locus and enhancer activity of regions with these sites. Nucleic Acids Res 23, 2236–2244

    Article  PubMed  CAS  Google Scholar 

  • Ammer H, Henschen A, Lee C (1986) Isolation and amino acid sequence analysis of human sperm protamines PI and P2. Occurrence of two forms of protamine P2. Biol Chem Hoppe-Seyler 367, 515–522

    PubMed  CAS  Google Scholar 

  • Antequera F, Macleod D, Bird AP (1989) Specific protection of methylated CpGs in mammalian nuclei. Cell 58, 509–517

    Article  PubMed  CAS  Google Scholar 

  • Ariel M, McCarrey J, Cedar H (1991) Methylation patterns of testisspecific genes. Proc Natl Acad Sci USA 88, 2317–2321

    Article  PubMed  CAS  Google Scholar 

  • Ariel M, Cedar H, McCarrey J (1994) Developmental changes in methylation of spermatogenesis-specific genes include reprogramming in the epidlidymis. Nature Genet 7, 59–63

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (1989) Mammalian protamines: structure and molecular interactions. In Molecular Biology of Chromosome Function, KW Adolph (ed). (New York: Springer-Verlag), pp 366–395

    Google Scholar 

  • Balhorn R, Weston S, Thomas C, Wyrobek AJ (1984) DNA packaging in mouse spermatids. Synthesis of protamine variants and four transition proteins. Exp Cell Res 150, 298–308

    Article  PubMed  CAS  Google Scholar 

  • Bellvé AR, Cavicchia JC, Millette CF, O’Brien DA, Bhatnagar YM, Dym M (1977) Spermatogenic cells of the prepubertal mouse: isolation and morphological characterization. J Cell Biol 74, 68–85

    Article  PubMed  Google Scholar 

  • Bird AP (1986) CpG-rich islands and the function of DNA methylation. Nature 321, 209–213

    Article  PubMed  CAS  Google Scholar 

  • Bonifer C, Vidal M, Grosveld F, Sippel AE (1990) Tissue-specific and position independent expression of the complete gene domain for chicken lysozyme in transgenic mice. EMBO J 9, 2843–2848

    PubMed  CAS  Google Scholar 

  • Boyes J, Bird A (1991) DNA methylation inhibits transcription indirectly via a methyl-CpG binding protein. Cell 64, 1123–1134

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-C, Chae C-B (1991) DNA hypomethylation and germ cell-specific expression of testis-specific H2B histone gene. J Biol Chem 266, 20504–20511

    PubMed  CAS  Google Scholar 

  • Choi Y-C, Chae C-B (1993) Demethylation of somatic and testis-specific histone H2A and H2B genes in F9 embryonal carcinoma cells. Mol Cell Biol 13, 5538–5548

    PubMed  CAS  Google Scholar 

  • Choi Y-C, Gu W, Hecht NB, Feinberg AP, Chae C-B (1996) Molecular cloning of mouse somatic and testis-specific H2B histone genes containing a methylated CpG island. DNA Cell Biol 15, 495–504

    Article  PubMed  CAS  Google Scholar 

  • Choudhary SK, Wykes SM, Kramer JA, Mohamed AN, Koppitch F, Nelson JE, Krawetz SA (1995) A haploid expressed gene cluster exists as a single chromatin domain in human sperm. J Biol Chem 270, 8755–8762

    Article  PubMed  CAS  Google Scholar 

  • Coulondre C, Miller JH, Farabaugh PJ, Gilbert W (1978) Molecular basis of base substitution hotspots in Escherichia coli. Nature 274, 775–780

    Article  PubMed  CAS  Google Scholar 

  • Gardiner-Garden M, Frommer M (1987) CpG islands in vertebrate genomes. J Mol Biol 196, 261–282

    Article  PubMed  CAS  Google Scholar 

  • Grosveld F, Blom van Assendelft G, Greaves DR, Kollias G (1987) Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 51, 975–985

    Article  PubMed  CAS  Google Scholar 

  • Iguchi-Ariga SMM, Schaffner W (1989) CpG methylation of the cAMP-responsive enhancer/promoter sequence TGACGTCA abolishes specific factor binding as well as transcriptional activation. Genes Dev 3, 612–619

    Article  PubMed  CAS  Google Scholar 

  • Kadonaga J, Jones K, Tjian R (1986) Promoter-specific activation of RNA polymerase II transcription by Spl. Trends Biochem Sci 11, 20–23

    Article  CAS  Google Scholar 

  • Keime S, Heitland K, Kumm S, Schlosser M, Hroch N, Holtz W, Engel W (1992) Characterization of four genes encoding basic proteins of the porcine spermatid nucleus and close linkage of three of them. Biol Chem Hoppe-Seyler 373, 261–270

    PubMed  CAS  Google Scholar 

  • Kistler WS, Geroch ME, Williams-Ashman HG (1973) Specific basic proteins from mammalian testes: isolation and properties of small basic proteins from rat testes and epididymal spermatozoa. J Biol Chem 248, 4532–4543

    PubMed  CAS  Google Scholar 

  • Kistler WS, Noyes C, Hsu R, Heinrickson RL (1975) The amino acid sequence of a testis-specific basic protein that is associated with spermatogenesis. J Biol Chem 250, 1847–1853

    PubMed  CAS  Google Scholar 

  • Kleene KC, Distel RJ, Hecht NB (1985) Nucleotide sequence of a cDNA clone encoding mouse protamine 1. Biochemistry 24, 719–722

    Article  PubMed  CAS  Google Scholar 

  • Kramer JA, Krawetz SA (1996) Nuclear matrix interactions within the sperm genome. J Biol Chem 271, 11619–11622

    Article  PubMed  CAS  Google Scholar 

  • Krawetz SA, Herfort MH, Hamerton JL, Pon RT, Dixon GH (1989) Chromosomal localization and structure of the human PI protamine gene. Genomics 5, 639–645

    Article  PubMed  CAS  Google Scholar 

  • Lichtenstein M, Keini G, Cedar H, Bergman Y (1994) B cell-specific demethylation: a novel role for the intronic k chain enhancer sequence. Cell 76, 913–923

    Article  PubMed  CAS  Google Scholar 

  • Macleod D, Charlton J, Mullins J, Bird AP (1994) Spl sites in the mouse aprt gene promoter are required to prevent methylation of the CpG island. Genes Dev 8, 2282–2292

    Article  PubMed  CAS  Google Scholar 

  • McKay DJ, Renaux BX, Dixon GH (1986) Human sperm protamines. Amino-acid sequences of two forms of protamine P2. Eur J Biochem 156, 5–8

    Article  PubMed  CAS  Google Scholar 

  • Meehan RR, Lewis JD, Bird AP (1992) Characterization of MeCP2, a vertebrate DNA binding protein with affinity for methylated DNA. Nucleic Acids Res 20, 5085–5092

    Article  PubMed  CAS  Google Scholar 

  • Meistrich ML (1989) Histone and basic nuclear protein transitions in mammalian spermatogenesis. In Histories and Other Basic Nuclear Proteins: Structure, Organization and Regulation of the Genes, LS Hnilica, GS Stein, JL Stein (eds) (Boca Raton, Fla: CRC Press), pp 165–182

    Google Scholar 

  • Nelson JE, Krawetz SA (1993) Linkage of human spermatid-specific basic nuclear protein genes. J Biol Chem 268, 2932–2936

    PubMed  CAS  Google Scholar 

  • Nelson JE, Krawetz SA (1994) Characterization of a human locus in transition. J Biol Chem 269, 31067–31073

    PubMed  CAS  Google Scholar 

  • Queralt R, Oliva R (1995) Demonstration of trans-acting factors binding to the promoter region of the testis-specific rat protamine P1 gene. Biochem Biophys Res Commun 208, 802–812

    Article  PubMed  CAS  Google Scholar 

  • Reeves RH, Gearhart JD, Hecht NB, Yelick P, Johnson P, O’Brien SJ (1989) Mapping of PRM1 to human Chromosome 16 and tight linkage of Prm-1 and Prm-2 on mouse chromosome 16. J Hered 80, 442–446

    PubMed  CAS  Google Scholar 

  • Schlüter G, Engel W (1995) The rat Prm3 gene is an intronless member of the protamine gene cluster and is expressed in haploid male germ cells. Cytogenet Cell Genet 71, 352–355

    Article  PubMed  Google Scholar 

  • Schlüter G, Celik A, Obata R, Schlicker M, Hofferbert S, Schlung A, Adham IM, Engel W (1996) Sequence analysis of the conserved protamine gene cluster shows that it contains a fourth expressed gene. Mol Reprod Dev 43, 1–6

    Article  PubMed  Google Scholar 

  • Stewart TA, Hecht NB, Hollingshead PG, Johnson PA, Leong JC, Pitts SL (1988) Haploid-specific transcription of protamine-myc and protamine-T-antigen fusion genes in transgenic mice. Mol Cell Biol 8, 1748–1755

    PubMed  CAS  Google Scholar 

  • Tamura T, Makino Y, Mikoshiba K, Muramatsu M (1992) Demonstration of a testis-specific trans-acting factor Tet-1 in vitro that binds to the promoter of the mouse protamine 1 gene. J Biol Chem 267, 4327–4332

    PubMed  CAS  Google Scholar 

  • Trasler JM, Hake LE, Johnson PA, Alcivar AA, Millette CF, Hecht NB (1990) DNA methylation and demethylation events during meiotic prophase in the mouse testis. Mol Cell Biol 10, 1828–1834

    PubMed  CAS  Google Scholar 

  • Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367, 525–532

    Article  PubMed  CAS  Google Scholar 

  • Yelick PC, Balhorn R, Johnson PA, Corzett M, Mazrimas JA, Kleene KC, Hecht NB (1987) Mouse protamine 2 is synthesized as a precursor whereas mouse protamine 1 is not. Mol Cell Biol 7, 2173–2179

    PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Palmiter RD (1994) Testis-specific and ubiquitous proteins bind to functionally important regions of the mouse protamine-1 promoter. Biol Reprod 50, 65–72

    Article  PubMed  CAS  Google Scholar 

  • Zambrowicz BP, Harendza CJ, Zimmermann JW, Brinster RL, Palmiter RD (1993) Analysis of the mouse protamine 1 promoter in transgenic mice. Proc Natl Acad Sci USA 90, 5071–5075

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Choi, YC., Aizawa, A. & Hecht, N.B. Genomic analysis of the mouse protamine 1, protamine 2, and transition protein 2 gene cluster reveals hypermethylation in expressing cells. Mammalian Genome 8, 317–323 (1997). https://doi.org/10.1007/s003359900431

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900431

Keywords

Navigation