Mammalian Genome

, Volume 8, Issue 3, pp 200–208 | Cite as

Mapping murine loci for seizure response to kainic acid

  • T. N. Ferraro
  • G. T. Golden
  • G. G. Smith
  • N. J. Schork
  • P. St. Jean
  • C. Ballas
  • H. Choi
  • W. H. Berrettini
Original Contribution

Abstract

Mature DBA/2J (D2) mice are very sensitive to seizures induced by various chemical and physical stimuli, whereas C57BL/6J (B6) mice are relatively seizure resistant. We have conducted a genome-wide search for quantitative trait loci (QTLs) influencing the differential sensitivity of these strains to kainic acid (KA)-induced seizures by studying an F2 intercross population. Parental, F1, and F2 mice (8–10 weeks of age) were injected subcutaneously with 25 mg/kg of KA and observed for 3 h. Latencies to focal and generalized seizures and status epilepticus were recorded and used to calculate an overall seizure score. Results of seizure testing indicated that the difference in susceptibility to KA-induced seizures between D2 and B6 mice is a polygenic phenomenon with at least 65% of the variance due to genetic factors. First-pass genome screening (10-cM marker intervals) in F2 progeny (n = 257) documented a QTL of moderate effect on Chromosome (Chr) 1 with a peak LOD score of 5.5 (17% of genetic variance explained) localized between D1Mit30 and D1Mit16. Provisional QTLs of small effect were detected on Chr 11 (D11Mit224–D11Mitl4), 15 (D15Mit6–D15Mit46) and 18 (D18Mit9–D18Mitl44). Multiple locus models generally confirmed the Mapmaker/QTL results and also provided evidence for another QTL on Chr 4 (D4Mit9). Multilocus analysis of seizure severity suggested that additional loci on Chrs 5 (D5Mit11), 7 (D7Mit66), and 15 (D15Nds2) might also contribute to KA-induced seizure response. Overall, our results document a complex genetic determinism for KA-induced seizures in these mouse strains with contributions from as many as eight QTLs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson WR, Franck JE, Stahl WL, Maki AA (1994). Na, K-ATPase is decreased in hippocampus of kainate-lesioned rats. Epilepsy Res 17, 221–231PubMedCrossRefGoogle Scholar
  2. Bagetta G, Iannone M, Palma E, Rodino P, Granato T, and Nistico G. (1995) Lack of involvement of nitric oxide in the mechanisms of seizures and hippocampal damage produced by kainate and oubain in rats. Neurodegeneration 4, 43–49PubMedCrossRefGoogle Scholar
  3. Ben-Ari Y (1985). Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience 14, 375–403PubMedCrossRefGoogle Scholar
  4. Ben-Ari Y, Tremblay E, Riche D, Ghilini G, Naquet R (1981). Electrographic, clinical and pathological alterations following systemic administration of kainic acid, bicuculline and penetrazole: metabolic mapping using the deoxyglucose method with special reference to the pathology of epilepsy. Neuroscience 6, 1361–1391PubMedCrossRefGoogle Scholar
  5. Berrettini WB, Ferraro TN, Alexander R, Vogel WV (1994). Quantitative trait loci mapping of three loci controlling morphine preference using inbred mouse strains. Nature Genet 7, 54–58PubMedCrossRefGoogle Scholar
  6. Brines ML, Dare AO, deLanerolle NC (1995). The cardiac glycoside oubain potentiates excitotoxic injury of adult neurons in rat hippocampus. Neurosci Lett 191, 145–148PubMedCrossRefGoogle Scholar
  7. Collingridge GL, Lester RAJ (1989). Excitatory amino acid receptors in the vertebrate central nervous system. Pharmacol. Rev. 40, 143–210Google Scholar
  8. Curtis D (1996). Genetic dissection of complex traits (in reply to correspondence). Nature Genet 11, 355–358Google Scholar
  9. DeBry RW, Seidin MF (1996). Human/mouse homology relationships. Genomics 33, 337–351PubMedCrossRefGoogle Scholar
  10. Delgado-Escueta AV, Greenberg D, Weissbecker K, Liu A, Treiman L, Sparkes R, Park MS, Barbetti A, Terasaki PI (1990). Gene mapping in the idiopathic generalized epilepsies: juvenile myoclonic epilepsy, childhood absence epilepsy, epilepsy with grand mal seizures, and early childhood myoclonic epilepsy. Epilepsia 31 (Suppl. 3), S19-S29PubMedCrossRefGoogle Scholar
  11. Dietrich WF, Miller JC, Steen RG, Merchant M, Damron D, Nahf R, Gross A, Joyce DC, Wessel M, Dredge RD, Marquis A, Stein LD, Goodman N, Page, DC, Lander ES (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet 7, 220–245PubMedCrossRefGoogle Scholar
  12. Dietrich WF, Miller JC, Steen RG, Merchant M, Damron-Boles D, Husain Z, Dredge R, Daly M, Ingalls K, O’Connor T, Evans C, DeAngelis M, Levinson D, Kruglyak L, Goodman N, Copeland N, Jenkins N, Hawkins T, Lincoln S, Page D, Lander E. (1996) A comprehensive genetic map of the mouse genome. Nature 380, 149–152PubMedCrossRefGoogle Scholar
  13. Engstrom FL, Woodbury DM (1988). Seizure susceptibility in DBA and C57 mice: the effects of various convulsants. Epilepsia 29, 389–395PubMedCrossRefGoogle Scholar
  14. Ferraro TN, Golden GT, Smith GG, Berrettini WH (1995). Differential susceptibility to seizures induced by kainic acid. Epilepsia 36, 301–307PubMedCrossRefGoogle Scholar
  15. Frankel WN, Taylor BA, Noebels JL, Lutz CM (1994). Genetics epilepsy model derived from common inbred mouse strains. Genetics 138, 1–9Google Scholar
  16. Frankel WN, Valenzuela A, Lutz CM, Johnson EW, Dietrich WF, JM Coffin (1995). New seizure frequency QTL and the complex genetics of epilepsy in EL mice. Mamm Genome 6, 830–838PubMedCrossRefGoogle Scholar
  17. Johnson SW, Seutin V, North RA (1992). Burst firing in dopamine neurons induced by N-methyl-D-aspartate: role of electrogenic sodium pump. Science 258, 665–667PubMedCrossRefGoogle Scholar
  18. Kent RB, Fallows DA, Geissler E, Glaser T, Rettig Emanuel J, Lalley PA, Levenson R, Houseman DE (1987). Genes encoding a and B subunits of Na, K-ATPase are located on three different chromosomes in the mouse. Proc Natl Acad Sci USA 84, 5369–5373PubMedCrossRefGoogle Scholar
  19. Kosobud AE, Crabbe JC (1990). Genetic correlations among inbred strain sensitivities to convulsions induced by 9 convulsant drugs. Brain Res 526, 8–16PubMedCrossRefGoogle Scholar
  20. Kruglyak L, Lander ES (1995). A nonparametric approach for mapping quantitative trait loci. Genetics 139, 1421–1428PubMedGoogle Scholar
  21. Lahiri DK, Nurnberger JI (1991). A rapid non-enzymatic method for the preparation of high molecular weight DNA from blood for RFLP studies. Nucleic Acids Res 19, 5444PubMedCrossRefGoogle Scholar
  22. Lander ES, Botstein D (1989). Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121, 185–199PubMedGoogle Scholar
  23. Lander ES, Kruglyak L (1995). Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nature Genet 11, 241–247PubMedCrossRefGoogle Scholar
  24. Lander ES, Kruglyak L (1996). Genetic dissection of complex traits (in reply to correspondence). Nature Genet 11, 355–358Google Scholar
  25. Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987). MAPMAKER: An interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1, 174–181PubMedCrossRefGoogle Scholar
  26. Martin B, Marchaland C, Chapouthier G, Motta R (1994). Evidence for a multigenic system controlling methyl-B-carboline-S-carboxylate (B-CCM)-induced seizures. Behav Genet 24, 285–297PubMedCrossRefGoogle Scholar
  27. Martin B, Clement Y, Venault P, Chapouthier G (1995). Mouse chromosomes 4 and 13 are involved in B-carboline-induced seizures. J Hered 86, 274–279PubMedGoogle Scholar
  28. McAleer MA, Reifsnyder P, Palmer SM, Prochazka M, Love JM, Copeman JB, Powell EE, Rodrigues NR, Prins JB, Serreze DV, DeLarato NH, Wicker LS, Peterson LB, Schork NJ, Todd JA, Leiter EH (1995). Crosses of NOD mice with the related NON strain. Diabetes 44, 1186–1195PubMedCrossRefGoogle Scholar
  29. Nadler JV (1981). Kainic acid as a tool for the study of temporal lobe epilepsy. Life Sci 29, 2031–2042PubMedCrossRefGoogle Scholar
  30. Neumann PE, Collins RL (1991). Genetic dissection of susceptibility to audiogenic seizures in inbred mice. Proc Natl Acad Sci USA 88, 5408–5412PubMedCrossRefGoogle Scholar
  31. Neumann PE, Seyfried TN (1990). Mapping of two genes that influence susceptibility to audiogenic seizures in crosses of C57BL/6J and DBA/ 2J mice. Behav Genet 20, 307–323PubMedCrossRefGoogle Scholar
  32. Risch N, Ghosh S, Todd JA (1993). Statistical evaluation of multiple-locus linkage data in experimental species and its relevance to human studies: application to nonobese diabetic (NOD) mouse and human insulin-dependent diabetes mellitus (IDDM). Am J Hum Genet 53, 702–714PubMedGoogle Scholar
  33. Rise ML, Frankel WN, Coffin JM, Seyfried TN (1991). Genes for epilepsy mapped in the mouse. Science 253, 669–673PubMedCrossRefGoogle Scholar
  34. Schork NJ, Krieger JE, Trolliet MR, Franchini KG, Koike G, Krieger EM, Lander ES, Dzau VJ, Jacob HJ (1995). A biometrical genome search in rats reveals the multigenic basis of blood pressure variation. Genome Res 5, 164–172PubMedCrossRefGoogle Scholar
  35. Taylor BA and Phillips SJ (1996) Detection of obesity QTLs on mouse chromosome 1 and 7 by selective DNA pooling. Genomics 34, 389–398PubMedCrossRefGoogle Scholar
  36. Tecott LH, Sun LM, Akara SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-Ht2c serotonin receptors. Nature 374, 542–546PubMedCrossRefGoogle Scholar
  37. Warden CH, Fisher JS, Shoemaker SM, Wen P-Z, Svenson KL (1995) Identification of four chromosomal loci determining obesity in a multi-factorial mouse model. J. Clin Invest 95, 1545–1552PubMedCrossRefGoogle Scholar
  38. Weissbecker KA, Durner M, Janz D, Scaramelli A, Sparkes RS, Spence MA (1991). Confirmation of linkage between juvenile myoclonic epilepsy locus and the HLA region of chromosome 6. Am J Med Genet 38, 32–36PubMedCrossRefGoogle Scholar
  39. West DB, Waguespack J, York B, Goudey-Lefevre J, Price RA (1994) Genetics of dietary obesity in AKR/J × SWR/J mice: segregation of the trait and identification of a linked locus on chromosome 4. Mamm Genome 5, 546–552PubMedCrossRefGoogle Scholar
  40. Whitehouse WP, Rees M, Curtis D, Sundqvist A, Parker K, Chung E, Baralle D, Gardiner RM (1993). Linkage analysis of idiopathic generalized epilepsy (IGE) and marker loci on chromosome 6p in families of patients with juvenile myoclonic epilepsy: no evidence for an epilepsy locus in the HLA region. Am J Hum Genet 53, 652–662PubMedGoogle Scholar
  41. Witte JS, Elston RC, Schork NJ (1996). Genetic dissection of complex traits. Nature Genet 11, 355–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • T. N. Ferraro
    • 1
    • 2
  • G. T. Golden
    • 3
    • 4
  • G. G. Smith
    • 4
  • N. J. Schork
    • 5
    • 6
    • 7
    • 8
  • P. St. Jean
    • 5
  • C. Ballas
    • 2
  • H. Choi
    • 1
  • W. H. Berrettini
    • 1
    • 2
  1. 1.Department of PsychiatryThomas Jefferson UniversityPhiladelphiaUSA
  2. 2.Department of PharmacologyThomas Jefferson UniversityPhiladelphiaUSA
  3. 3.Department of NeurologyThomas Jefferson UniversityPhiladelphiaUSA
  4. 4.Department of Veterans Affairs Medical CenterResearch ServiceCoatesvilleUSA
  5. 5.Departments of Epidemiology and BiostatisticsCase Western Reserve UniversityClevelandUSA
  6. 6.Department of GeneticsCase Western Reserve UniversityClevelandUSA
  7. 7.Department of BiostatisticsHarvard UniversityBostonUSA
  8. 8.The Jackson LaboratoryBar HarborUSA

Personalised recommendations