Skip to main content

Advertisement

Log in

Cloning of the homogentisate 1,2-dioxygenase gene, the key enzyme of alkaptonuria in mouse

  • Original Contribution
  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

We determined 48 amino acid residues from five pep-tides from the homogeneous monomer of homogentisate 1,2-dioxygenase (HGO; E.C. 1.13.11.15) of mouse liver. After digestion with trypsin, peptides were separated by reversed phase chromatography and amino acid sequenced. The deduced codon sequence of three peptides was used to derive degenerated oligo-meres. By combining these oligos, we were able to amplify fragments from 100 to 300 bases (b) from mouse liver cDNA by polymerase chain reaction after reverse transcription (RT-PCR). A fragment of 200 b was cloned and used as a probe to screen a mouse liver cDNA library. One clone from this library contained the complete cDNA-insert for HGO as determined by sequencing. The cDNA encodes for a protein of 50 kDa, as predicted. The cDNA of mouse HGO has an overall identity of 41% to the corresponding gene hmgA from Aspergillus. Sequence similarities to human expressed sequence tags (EST) clones ranged from 70% to 20%. The positions of 122 conserved amino acids could be determined by multiple sequence alignment. We identified one first intron of 928 b in the mouse gene. The gene for HGO seems to be expressed in various tissues, as shown by RT-PCR on different cDNAs. FISH experiments with the whole murine cDNA as probe clearly revealed signals at the human chromosomal band 3ql3.3–q21. This corresponds well to the previous assignment of the locus for the human alkaptonuria gene (AKU) to the same chromosomal region by multipoint linkage analysis. We therefore conclude that the HGO cDNA encodes the gene responsible for alkaptonuria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Chomczynski P, Sacchi NA (1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162, 156–159

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP, Vogelstein B (1983). A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal Biochem 132, 6–13

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Canon JM, Penalva MA (1995) Molecular characterization of a gene encoding a homogentisate dioxygenase from Aspergillus nidulans and identification of its human and plant homologues. J Biol Chem 270, 21199–21205

    Article  PubMed  CAS  Google Scholar 

  • Francke U (1994). Digitized and differentially shaded human chromosome ideograms for genomic applications. Cytogenet Cell Genet 65, 206–219

    Article  PubMed  CAS  Google Scholar 

  • Garrod AE (1902). The incidence of alkaptonuria: a study in chemical individuality. Lancet II, 1616

    Article  Google Scholar 

  • Garrod AE (1908). The Croonian lectures on inborn errors of metabolism. Lecture II. Alkaptonuria. Lancet 2, 73

    CAS  Google Scholar 

  • Han S, Eltis LD, Timmis KN, Muchmore SW, Bolin JT (1995). Crystal structure of the biphenyl-cleaving extradiol dioxygenase from a PCB-degrading pseudomonad. Science 270, 976–980

    Article  PubMed  CAS  Google Scholar 

  • Harayama S, Rekik M (1989). Bacterial aromatic ring-cleavage enzymes are classified into two different gene families. J Biol Chem 264, 15328–15333

    PubMed  CAS  Google Scholar 

  • Janocha S, Wolz W, Srsen S, Srsnova K, Montagutelli X, Guénet J-L, Grimm T, Kress W, Müller CR (1994) The human gene for alkaptonuria (AKU) maps to chromosome 3q. Genomics 19, 5–8

    Article  PubMed  CAS  Google Scholar 

  • Köhler MR, Vogt P (1994). Interstitial deletions of repetitive DNA blocks in dicentric human Y chromosomes. Chromosoma 103, 324–330

    Article  PubMed  Google Scholar 

  • La Du BN, Zannoni VG, Laster I, Seegmiller JE (1958). The nature of the defect in tyrosine metabolism in alkaptonuria. J Biol Chem 230, 251–260

    Google Scholar 

  • Montagutelli X, Lalouette A, Codé M, Kamoun P, Forest M, Guénet J-L (1994). aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16. Genomics 19, 9–11

    Article  PubMed  CAS  Google Scholar 

  • Pinkel D, Straume T, Gray JW (1986). Cytogenetic analysis using quantitative, high-sensitivity, fluorescence hybridization. Proc Natl Acad Sci USA 83, 2934–2938

    Article  PubMed  CAS  Google Scholar 

  • Pollak MR, Chou Y-HW, Cerda JJ, Steinmann, B, La Du BN, Seidman JG, Seidman CE (1993). Homozygosity mapping of the gene for alkaptonuria to chromosome 3q2. Nature Genet 5, 201–204

    Article  PubMed  CAS  Google Scholar 

  • Schmidt SR, Müller CR, Kress W (1995). Murine liver homogentisate 1,2-dioxygenase. Purification to homogeneity and novel biochemical properties. Eur J Biochem 228, 425–430

    Article  PubMed  CAS  Google Scholar 

  • Schweizer, D (1976). Reverse fluorescent chromosome banding with chro-momycin and DAPI. Chromosoma 58, 307–324

    Article  PubMed  CAS  Google Scholar 

  • Srsen S, Cisarik F, Pasztor L, Harmecko L (1978). Alkaptonuria in the Trencin district of Czechoslovakia. Am J Med Genet 2, 159–166

    Article  PubMed  CAS  Google Scholar 

  • Voss H, Wiemann S, Grothues D, Sensen C, Zimmermann J, Schwager C, Stegemann J, Erfle H, Rupp T, Ansorge W (1993). Automated low-redundancy large-scale DNA sequencing by primer walking. Biotechniques 15, 714–721

    PubMed  CAS  Google Scholar 

  • Wada K-N, Wada Y, Ishibashi F, Gojobori T, Ikemura T (1992). Codon usage tabulated from the GenBank genetic sequence data. Nucleic Acids Res 20, 2111–2118

    PubMed  CAS  Google Scholar 

  • Wessel D, Flügge UI (1984). A method for the quantitative recovery of protein in dilute solution in the presence of detergents and lipids. Anal Biochem 138, 141–143

    Article  PubMed  CAS  Google Scholar 

  • Zannoni VG, Lomtevas N, Goldfinger S (1969). Oxidation of homogentisic acid to ochronotic pigment in connective tissue. Biochim Biophys Acta 177, 94–105

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The nucleotide sequence data reported in this paper have been submitted to GenBank and have been assigned the accession number U58988.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmidt, S.R., Gehrig, A., Koehler, M.R. et al. Cloning of the homogentisate 1,2-dioxygenase gene, the key enzyme of alkaptonuria in mouse. Mammalian Genome 8, 168–171 (1997). https://doi.org/10.1007/s003359900383

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s003359900383

Keywords

Navigation