Advertisement

Mammalian Genome

, Volume 8, Issue 1, pp 21–28 | Cite as

A medium-density genetic linkage map of the bovine genome

  • W. Barendse
  • D. Vaiman
  • S. J. Kemp
  • Y. Sugimoto
  • S. M. Armitage
  • J. L. Williams
  • H. S. Sun
  • A. Eggen
  • M. Agaba
  • S. A. Aleyasin
  • M. Band
  • M. D. Bishop
  • J. Buitkamp
  • K. Byrne
  • F. Collins
  • L. Cooper
  • W. Coppettiers
  • B. Denys
  • R. D. Drinkwater
  • K. Easterday
  • C. Elduque
  • S. Ennis
  • G. Erhardt
  • L. Ferretti
  • N. Flavin
  • Q. Gao
  • M. Georges
  • R. Gurung
  • B. Harlizius
  • G. Hawkins
  • J. Hetzel
  • T. Hirano
  • D. Hulme
  • C. Jorgensen
  • M. Kessler
  • B. W. Kirkpatrick
  • B. Konfortov
  • S. Kostia
  • C. Kuhn
  • J. A. Lenstra
  • H. Leveziel
  • H. A. Lewin
  • B. Leyhe
  • L. Lil
  • I. Martin Burriel
  • R. A. McGraw
  • J. R. Miller
  • D. E. Moody
  • S. S. Moore
  • S. Nakane
  • I. J. Nijman
  • I. Olsaker
  • D. Pomp
  • A. Rando
  • M. Ron
  • A. Shalom
  • A. J. Teale
  • U. Thieven
  • B. G. D. Urquhart
  • D. -I. Vage
  • A. Van de Weghe
  • S. Varvio
  • R. Velmala
  • J. Vilkki
  • R. Weikard
  • C. Woodside
  • J. E. Womack
  • M. Zanotti
  • P. Zaragoza
Original Contribution

Abstract

A cattle genetic linkage map was constructed which covers more than 95 percent of the bovine genome at medium density. Seven hundred and forty six DNA polymorphisms were genotyped in cattle families which comprise 347 individuals in full sibling pedigrees. Seven hundred and three of the loci are linked to at least one other locus. All linkage groups are assigned to chromosomes, and all are orientated with regards to the centromere. There is little overall difference in the lengths of the bull and cow linkage maps although there are individual differences between maps of chromosomes. One hundred and sixty polymorphisms are in or near genes, and the resultant genome-wide comparative analyses indicate that while there is greater conservation of synteny between cattle and humans compared with mice, the conservation of gene order between cattle and humans is much less than would be expected from the conservation of synteny. This map provides a basis for high-resolution mapping of the bovine genome with physical resources such as Yeast and Bacterial Artificial Chromosomes as well as providing the underpinning for the interpolation of information from the Human Genome Project.

USDA-MARC family and data for validating this family. P. Creighton, C. Skidmore, T. Holm, and A. Georgoudis provided some validation data for the BOVMAP families. R. Fries, S. Johnson, S. Solinas Toldo, and A. Mezzelani kindly made some of their FISH assignments available before publication. We wish to thank all those researchers who kindly sent us probes and DNA primers.

Keywords

Bacterial Artificial Chromosome Gene Order Bacterial Artificial Chromosome Library Bovine Genome Bovine Chromosome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J. (1990). Basic local alignment search tool. J. Mol. Biol. 215, 403–410.PubMedGoogle Scholar
  2. Barendse, W., Armitage, S.M., Ryan, A.M., Moore, S.S., Clayton, D., Georges, M., et al. (1993). A genetic map of DNA markers on bovine chromosome 1. Genomics 18, 602–608.PubMedCrossRefGoogle Scholar
  3. Barendse, W., Armitage, S.M., Kossarek, L.M., Shalom, A., Kirkpatrick, B.W., Ryan, A.M. et al. 1994. A genetic linkage map of the bovine genome. Nature Genet. 6, 227–235.PubMedCrossRefGoogle Scholar
  4. Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L., Hawkins, G.A. et al., (1994). A genetic linkage map of cattle. Genetics 136, 619–639.PubMedGoogle Scholar
  5. Cai, L., Taylor, J.F., Wing, R.A., Gallagher, D.S., Woo, S.-S., Davis, S.K. (1995). Construction and characterization of a bovine bacterial artificial chromosome library. Genomics 29, 413–425.PubMedCrossRefGoogle Scholar
  6. Chiryaeva, O.G., Amosova, A.V., Efimov, A.M., Smirnov, A.F., Kaminir, L.B., Yakovlev, A.F. et al. (1989). Cytogentic mapping of cattle (Bos taurus L.) using quantitative analysis of the RBA map of prometaphase chromosomes. In Cytogenetics of Animals, C.R.E. Hainan, ed., CAB International, Oxford: pp. 211–219.Google Scholar
  7. Crawford, A.M., Montgomery, G.W., Pierson, C.A., Brown, T., Dodds, K.G., Sunden, S.L. et al. (1994). Sheep linkage mapping: nineteen linkage groups derived from the analysis of paternal half-sib families. Genetics 137, 573–579.PubMedGoogle Scholar
  8. Dietrich, W.F., Miller, J.C., Steen, R.G., Merchant, M., Damron, D., Nahf, R., et al. (1994). A genetic map of the mouse with 4,006 simple sequence length polymorphisms. Nature Genet. 7, 220–245.PubMedCrossRefGoogle Scholar
  9. Edwards, J.H. (1994). Comparative genome mapping in mammals. Curr. Opin. Genet. Dev. 4, 861–867.PubMedCrossRefGoogle Scholar
  10. Eggen, A., Fries, R. (1995). An integrated cytogenetic and meiotic map of the bovine genome. Animal Genet. 26, 215–236.PubMedGoogle Scholar
  11. Epstein, H., Mason, I.L. (1984). Cattle. In Evolution of Domesticated Animals, I.L. Mason ed. London and New York: Longman, pp. 6–27.Google Scholar
  12. Ferretti, L., Urquhart, B.G.D., Eggen, A., Olsaker, I., Harlizius, B., Castiglioni, B. et al. (in press). Cosmid-derived markers anchoring the bovine genetic map to the physical map. Mamm. GenomeGoogle Scholar
  13. Fries, R., Eggen, A., Womack, J.E. (1993). The bovine genome map. Mamm. Genome 4, 405–428.PubMedCrossRefGoogle Scholar
  14. Gallagher, D.S., Womack, J.E. (1992). Chromosome conservation in the bovidae. J. Hered. 83, 287–298.PubMedGoogle Scholar
  15. Gallagher, D.S., Derr, J.N., Womack, J.E. (1994). Chromosome conservation among the advanced pecorans and determination of the primitive bovid karyotype. J. Hered. 85, 204–210.PubMedGoogle Scholar
  16. Georges, M., Nielsen, D., Mackinnon, M., Mishra, A., Okimoto, R., Pasquino, A.T., et al. (1995). Mapping quantitative trait loci controlling milk production in dairy cattle by exploiting progeny testing. Genetics 139, 907–920.PubMedGoogle Scholar
  17. Green, P., Falls, K., Crooks, S. (1990). Documentation for CRI-MAP, version 2.4 (3/26/90).Google Scholar
  18. Gyapay, G., Morisette, J., Vignal, A., Dib, C., Fizames, C., Millaseau, P., et al. (1994). The 1993–1994 Genethon human genetic linkage map. Nature Genet. 7, 246–339.PubMedCrossRefGoogle Scholar
  19. Hediger, R. (1988). Die in situ Hybridisierung zur Genkartierung beim Rund und Schaf. Ph.D. thesis of ETH Zuerich, Diss. ETH 8725.Google Scholar
  20. Hudson, T.J., Stein, L.D., Gerety, S.S., Ma, J., Castle, A.B., Silva, J., et al. (1995). An STS-based map of the human genome. Science 270, 1945–1954.PubMedCrossRefGoogle Scholar
  21. Kemp, S.J., Hishida, O., Wambugu, J., Rink, A., Longeri, M.L., Ma, R.Z. et al. (1995). A panel of polymorphic bovine, ovine and caprine micro-satellite markers. Anim. Genet: 26, 299–306.PubMedCrossRefGoogle Scholar
  22. Libert, F., Lefort, A., Okimoto, R., Womack, J. Georges, M. (1993). Construction of a bovine genomic library of large yeast artificial chromosomes. Genomics 18, 270–276.PubMedCrossRefGoogle Scholar
  23. Ma, R.Z., Beever, J.E., Da, Y., Green, C.A., Russ, I., Park, C., et al. (1996). A male linkage map of the cattle. (Bos taurus) genome. J. Hered. in press.Google Scholar
  24. Moore, S.S., Barendse, W., Berger, K.T., Armitage, S.M., Hetzel, D.J.S. (1992). Bovine and ovine DNA microsatellites from the EMBL and GENBANK databases. Anim. Genet. 23, 463–467.PubMedGoogle Scholar
  25. Moore, S.S., Byrne, K., Berger, K.T., Barendse, W., McCarthy, F., Womack, J.E. et al. (1994). Characterization of 65 bovine microsatellite. Mamm. Genome 5, 84–90.PubMedCrossRefGoogle Scholar
  26. Rohrer, G.A., Alexander, L.J., Keele, J.W., Smith, T.P., Beattie, C.W. (1994). A microsatellite linkage map of the porcine genome. Genetics 136, 231–245.PubMedGoogle Scholar
  27. Templeton, J.W., Smith, R. III, Adams, L.G. (1988). Natural disease resistance in domestic animals. J. Am. Vet. Med. Assoc. 192, 1306–1315.PubMedGoogle Scholar
  28. Thieven, U., Solinas Toldo, S., Friedl, R., Masabanda, J., Fries, R., Barendse, W. et al. (in press). Polymorphic CA-microsatellites for the integration of the bovine genetic and physical map. Mamm. GenomeGoogle Scholar
  29. Toldo, S.S., Fries, R., Steffen, P., Neibergs, H.L., Barendse, W., Womack, J.E. et al. (1993). Physically mapped, cosmid derived microsatellite markers as anchor loci on bovine chromosomes. Mamm. Genome 4, 720–727.PubMedCrossRefGoogle Scholar
  30. Vaiman, D., Mercier, D., Moazami-Goudarzi, K., Eggen, A., Ciampolini, R., Lepingle, A. et al. (1994). A set of 99 cattle microsatellites: characterization, synteny mapping, and polymorphism. Mamm. Genome 5, 288–297.PubMedCrossRefGoogle Scholar
  31. Womack, J.E., Kata, S. (1995). Bovine genome mapping: evolutionary inference and the power of comparative genomics. Curr. Opin. Genet. Dev. 5, 725–733.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1997

Authors and Affiliations

  • W. Barendse
    • 1
  • D. Vaiman
    • 2
  • S. J. Kemp
    • 3
  • Y. Sugimoto
    • 4
  • S. M. Armitage
    • 1
  • J. L. Williams
    • 5
  • H. S. Sun
    • 6
  • A. Eggen
    • 2
  • M. Agaba
    • 3
  • S. A. Aleyasin
    • 1
  • M. Band
    • 7
  • M. D. Bishop
    • 8
  • J. Buitkamp
    • 9
  • K. Byrne
    • 1
  • F. Collins
    • 1
  • L. Cooper
    • 1
  • W. Coppettiers
    • 10
  • B. Denys
    • 10
  • R. D. Drinkwater
    • 1
  • K. Easterday
    • 11
  • C. Elduque
    • 2
    • 22
  • S. Ennis
    • 12
  • G. Erhardt
    • 13
  • L. Ferretti
    • 14
  • N. Flavin
    • 12
  • Q. Gao
    • 15
  • M. Georges
    • 10
  • R. Gurung
    • 1
  • B. Harlizius
    • 16
  • G. Hawkins
    • 8
  • J. Hetzel
    • 1
  • T. Hirano
    • 4
  • D. Hulme
    • 34
  • C. Jorgensen
    • 17
  • M. Kessler
    • 13
  • B. W. Kirkpatrick
    • 6
  • B. Konfortov
    • 18
  • S. Kostia
    • 31
  • C. Kuhn
    • 19
  • J. A. Lenstra
    • 20
  • H. Leveziel
    • 2
  • H. A. Lewin
    • 21
  • B. Leyhe
    • 13
  • L. Lil
    • 15
  • I. Martin Burriel
    • 22
  • R. A. McGraw
    • 23
  • J. R. Miller
    • 18
  • D. E. Moody
    • 24
  • S. S. Moore
    • 1
  • S. Nakane
    • 4
    • 25
  • I. J. Nijman
    • 20
  • I. Olsaker
    • 26
    • 27
  • D. Pomp
    • 24
  • A. Rando
    • 28
  • M. Ron
    • 7
  • A. Shalom
    • 28
  • A. J. Teale
    • 3
  • U. Thieven
    • 16
  • B. G. D. Urquhart
    • 5
  • D. -I. Vage
    • 29
  • A. Van de Weghe
    • 30
  • S. Varvio
    • 31
  • R. Velmala
    • 32
  • J. Vilkki
    • 32
  • R. Weikard
    • 19
  • C. Woodside
    • 1
  • J. E. Womack
    • 15
  • M. Zanotti
    • 33
  • P. Zaragoza
    • 22
  1. 1.CSIRO Tropical Animal ProductionUniversity of QueenslandSt. LuciaAustralia
  2. 2.Laboratoire de Genetique biochimique et de CytogenetiqueINRA-CRJJouy en JosasFrance
  3. 3.ILRINairobiKenya
  4. 4.Shirakawa Institute of Animal GeneticsFukushimaJapan
  5. 5.BBSRC Roslin InstiteRoslin, MidlothianScotland
  6. 6.Department of Meat and Animal ScienceUniversity of Wisconsin-MadisonMadisonUSA
  7. 7.Agricultural Researh OrganizationBet DaganIsrael
  8. 8.American Breeders ServiceDeForestUSA
  9. 9.Rhur Universitaet BochumBochumGermany
  10. 10.Faculty of Veterinary MedicineUniversity of LiegeSart TilmanBelgium
  11. 11.Department of Dairy ScienceUniversity of Wisconsin-MadisonMadisonUSA
  12. 12.Biotechnology CentreUniversity College DublinBelfieldIreland
  13. 13.Jnstitut fur Tierzucht und HaustiergenetikJustut-Liebig-Universitaet GiessenGiessenGermany
  14. 14.IDVGA-CNRPaviaItaly
  15. 15.Department of Veterinary PathobiologyTexas A&M UniversityUSA
  16. 16.Institut fuer Tierzucht und VererbungsforschungTierazliche HochschuleGermany
  17. 17.Division of Animal Science and Animal HealthThe Royal Veterinary and Agricultural UniversityFrederiksberg CDenmark
  18. 18.Department of ImmunologyInstitute of Animal Physiology and Genetics ResearchBabrahamUK
  19. 19.Forschunginstitut fuer die BiologieLandwirtschafticher NutztiereDummerstorfGermany
  20. 20.Department of Bacteriology, Faculty of Veterinary MedicineInstitute for Infectious Diseases and ImmunologyUtrechtThe Netherlands
  21. 21.Department of Animal SciencesUniversity of IllinoisUrbanaUSA
  22. 22.Laboratorio de Genetica Bioquimica y Grupos SanguineosFacultad de VeterinariaZaragozaSpain
  23. 23.Department of Physiology and PharmacologyUniversity of GeorgiaAthensUSA
  24. 24.Department of Animal ScienceUniversity of Nebraska LincolnLincolnUSA
  25. 25.National Livestock Breeding CentreJapan
  26. 26.Department of Morphology, Genetics and Aquatic BiologyNorwegian College of Veterinary MedicineOsloNorway
  27. 27.Dipartimento di Scienze delle Produzione AnimaliPotenzaItaly
  28. 28.Department of GeneticsHebrew University of JerusalemJerusalemIsrael
  29. 29.Department of Animal ScienceAgricultural University of NorwayAsNorway
  30. 30.Departmentof Animal Genetics and BreedingRijks Universiteit GhentMerelbekeBelgium
  31. 31.Department of Biosciences, Division of GeneticsUniversity of HelsinkiFinland
  32. 32.Animal BreedingAgricultural Research CentreJokioinenFinland
  33. 33.Instituto Zootecnica, Facolta di Medicina VeterinariaUniversita degli Stidi di MilanoMilanoItaly
  34. 34.Ian Clunies Ross LaboratoriesCSIRO Animal HealthBlacktownAustralia

Personalised recommendations