Skip to main content

Advertisement

Log in

Generation of a humanized mAce2 and a conditional hACE2 mouse models permissive to SARS-COV-2 infection

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) remains a public health concern and a subject of active research effort. Development of pre-clinical animal models is critical to study viral-host interaction, tissue tropism, disease mechanisms, therapeutic approaches, and long-term sequelae of infection. Here, we report two mouse models for studying SARS-CoV-2: A knock-in mAce2F83Y,H353K mouse that expresses a mouse-human hybrid form of the angiotensin-converting enzyme 2 (ACE2) receptor under the endogenous mouse Ace2 promoter, and a Rosa26 conditional knock-in mouse carrying the human ACE2 allele (Rosa26hACE2). Although the mAce2F83Y,H353K mice were susceptible to intranasal inoculation with SARS-CoV-2, they did not show gross phenotypic abnormalities. Next, we generated a Rosa26hACE2;CMV-Cre mouse line that ubiquitously expresses the human ACE2 receptor. By day 3 post infection with SARS-CoV-2, Rosa26hACE2;CMV-Cre mice showed significant weight loss, a variable degree of alveolar wall thickening and reduced survival rates. Viral load measurements confirmed inoculation in lung and brain tissues of infected Rosa26hACE2;CMV-Cre mice. The phenotypic spectrum displayed by our different mouse models translates to the broad range of clinical symptoms seen in the human patients and can serve as a resource for the community to model and explore both treatment strategies and long-term consequences of SARS-CoV-2 infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akkiz H (2023) Unraveling the molecular and cellular pathogenesis of COVID-19-associated liver injury. Viruses 15(6):1287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Aly Z, Xie Y, Bowe B (2021) High-dimensional characterization of post-acute sequelae of COVID-19. Nature 594:259–264

    Article  CAS  PubMed  ADS  Google Scholar 

  • Bao L, Deng W, Huang B, Gao H, Liu J, Ren L, Wei Q, Yu P, Xu Y, Qi F, Qu Y, Li F, Lv Q, Wang W, Xue J, Gong S, Liu M, Wang G, Wang S, Song Z, Zhao L, Liu P, Zhao L, Ye F, Wang H, Zhou W, Zhu N, Zhen W, Yu H, Zhang X, Guo L, Chen L, Wang C, Wang Y, Wang X, Xiao Y, Sun Q, Liu H, Zhu F, Ma C, Yan L, Yang M, Han J, Xu W, Tan W, Peng X, Jin Q, Wu G, Qin C (2020) The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583:830–833

    Article  CAS  PubMed  ADS  Google Scholar 

  • Brielle ES, Schneidman-Duhovny D, Linial M (2020) The SARS-CoV-2 exerts a distinctive strategy for interacting with the ACE2 human receptor. Viruses 12(5):497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carofino BL, Justice MJ (2015) Tissue-specific regulation of oncogene expression using cre-inducible ROSA26 knock-in transgenic mice. Curr Protoc Mouse Biol 5:187–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Lee B, Lee AY, Modzelewski AJ, He L (2016) Highly efficient mouse genome editing by CRISPR ribonucleoprotein electroporation of zygotes. J Biol Chem 291:14457–14467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chu VT, Weber T, Graf R, Sommermann T, Petsch K, Sack U, Volchkov P, Rajewsky K, Kuhn R (2016) Efficient generation of Rosa26 knock-in mice using CRISPR/Cas9 in C57BL/6 zygotes. BMC Biotechnol 16:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H (2004) Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 203:631–637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey WT, Carabelli AM, Jackson B, Gupta RK, Thomson EC, Harrison EM, Ludden C, Reeve R, Rambaut A, Peacock SJ, Robertson DL, Consortium C-GU (2021) SARS-CoV-2 variants, spike mutations and immune escape. Nat Rev Microbiol 19:409–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hohenstein P, Slight J, Ozdemir DD, Burn SF, Berry R, Hastie ND (2008) High-efficiency Rosa26 knock-in vector construction for Cre-regulated overexpression and RNAi. PathoGenetics 1:3

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, Xiao Y, Gao H, Guo L, Xie J, Wang G, Jiang R, Gao Z, Jin Q, Wang J, Cao B (2020) Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395:497–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang RD, Liu MQ, Chen Y, Shan C, Zhou YW, Shen XR, Li Q, Zhang L, Zhu Y, Si HR, Wang Q, Min J, Wang X, Zhang W, Li B, Zhang HJ, Baric RS, Zhou P, Yang XL, Shi ZL (2020) Pathogenesis of SARS-CoV-2 in transgenic mice expressing human angiotensin-converting enzyme 2. Cell 182:50–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhang C, Sui J, Kuhn JH, Moore MJ, Luo S, Wong SK, Huang IC, Xu K, Vasilieva N, Murakami A, He Y, Marasco WA, Guan Y, Choe H, Farzan M (2005) Receptor and viral determinants of SARS-coronavirus adaptation to human ACE2. EMBO J 24:1634–1643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Liu J, Plante KS, Plante JA, Xie X, Zhang X, Ku Z, An Z, Scharton D, Schindewolf C, Widen SG, Menachery VD, Shi PY, Weaver SC (2022) The N501Y spike substitution enhances SARS-CoV-2 infection and transmission. Nature 602:294–299

    Article  CAS  PubMed  ADS  Google Scholar 

  • Mistrulli R, Ferrera A, Muthukkattil ML, Volpe M, Barbato E, Battistoni A (2023) SARS-CoV-2 related myocarditis: what we know so far. J Clin Med 12(14):4700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittal A, Khattri A, Verma V (2022) Structural and antigenic variations in the spike protein of emerging SARS-CoV-2 variants. PLoS Pathog 18:e1010260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oguz SH, Yildiz BO (2023) Endocrine disorders and COVID-19. Annu Rev Med 74:75–88

    Article  CAS  PubMed  Google Scholar 

  • Pandharipande P, Williams Roberson S, Harrison FE, Wilson JE, Bastarache JA, Ely EW (2023) Mitigating neurological, cognitive, and psychiatric sequelae of COVID-19-related critical illness. Lancet Respir Med 11:726–738

    Article  PubMed  PubMed Central  Google Scholar 

  • Pattanaik A, Bhandarkar BS, Lodha L, Marate S (2023) SARS-CoV-2 and the nervous system: current perspectives. Arch Virol 168:171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu Y, Zhao YB, Wang Q, Li JY, Zhou ZJ, Liao CH, Ge XY (2020) Predicting the angiotensin converting enzyme 2 (ACE2) utilizing capability as the receptor of SARS-CoV-2. Microbes Infect 22:221–225

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Epidemiol 27:493–497

    Article  Google Scholar 

  • Sun SH, Chen Q, Gu HJ, Yang G, Wang YX, Huang XY, Liu SS, Zhang NN, Li XF, Xiong R, Guo Y, Deng YQ, Huang WJ, Liu Q, Liu QM, Shen YL, Zhou Y, Yang X, Zhao TY, Fan CF, Zhou YS, Qin CF, Wang YC (2020) A mouse model of SARS-CoV-2 infection and pathogenesis. Cell Host Microbe 28:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao X, Garron T, Agrawal AS, Algaissi A, Peng BH, Wakamiya M, Chan TS, Lu L, Du L, Jiang S, Couch RB, Tseng CT (2016) Characterization and demonstration of the value of a lethal mouse model of middle east respiratory syndrome coronavirus infection and disease. J Virol 90:57–67

    Article  CAS  PubMed  Google Scholar 

  • Tseng CT, Huang C, Newman P, Wang N, Narayanan K, Watts DM, Makino S, Packard MM, Zaki SR, Chan TS, Peters CJ (2007) Severe acute respiratory syndrome coronavirus infection of mice transgenic for the human Angiotensin-converting enzyme 2 virus receptor. J Virol 81:1162–1173

    Article  CAS  PubMed  Google Scholar 

  • Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, Graham BS, McLellan JS (2020) Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367:1260–1263

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Yang B, Liu C, Ju X, Wu B, Wang Z, Dong F, Yu Y, Hou X, Fang M, Gao F, Guo X, Gui Y, Ding Q, Li W (2023) A tissue specific-infection mouse model of SARS-CoV-2. Cell Discov 9:43

    Article  PubMed  PubMed Central  Google Scholar 

  • Yap TF, Hsu JC, Liu Z, Rayavara K, Tat V, Tseng CK, Preston DJ (2022) Efficacy and self-similarity of SARS-CoV-2 thermal decontamination. J Hazard Mater 429:127709

    Article  CAS  PubMed  Google Scholar 

  • Yinda CK, Port JR, Bushmaker T, Offei Owusu I, Purushotham JN, Avanzato VA, Fischer RJ, Schulz JE, Holbrook MG, Hebner MJ, Rosenke R, Thomas T, Marzi A, Best SM, de Wit E, Shaia C, van Doremalen N, Munster VJ (2021) K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog 17:e1009195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579:270–273

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Zhou B, Thao TTN, Hoffmann D, Taddeo A, Ebert N, Labroussaa F, Pohlmann A, King J, Steiner S, Kelly JN, Portmann J, Halwe NJ, Ulrich L, Trueb BS, Fan X, Hoffmann B, Wang L, Thomann L, Lin X, Stalder H, Pozzi B, de Brot S, Jiang N, Cui D, Hossain J, Wilson MM, Keller MW, Stark TJ, Barnes JR, Dijkman R, Jores J, Benarafa C, Wentworth DE, Thiel V, Beer M (2021) SARS-CoV-2 spike D614G change enhances replication and transmission. Nature 592:122–127

    Article  CAS  PubMed  ADS  Google Scholar 

  • Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P, Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus I, Research T (2020) A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med 382:727–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The SARS-CoV-2 WA1/2020 used in this study was a kind gift from Dr. Natalie Thornburg at the Centers for Disease Control (CDC), Atlanta, GA, through the World Reference Center for Emerging Viruses and Arboviruses (WRCEVA). This project was supported by the Genetically Engineered Rodent Model (GERM) Core at BCM.

Funding

RM was supported by NIH/NIGMS T32GM07526. This project was supported by the Genetically Engineered Rodent Model (GERM) Core at BCM, which is funded in part by the National Institutes of Health Cancer Center Grant (P30 CA125123).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: IS, JDH, CKT, BL and RM. Methodology & investigation: IS, MW, CL, JH, KR, YC, MJ, AD, VT, DGL, IL and RM. Project administration: YB and NH. Supervision: CKT, BL and RM. Writing—original draft: IS, CKT, BL and RM. Writing—review & editing: All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Ronit Marom.

Ethics declarations

Competing interests

The authors have no competing interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 207 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, IW., Washington, M., Leynes, C. et al. Generation of a humanized mAce2 and a conditional hACE2 mouse models permissive to SARS-COV-2 infection. Mamm Genome (2024). https://doi.org/10.1007/s00335-024-10033-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00335-024-10033-8

Navigation