Skip to main content
Log in

Promises and challenges of cardiac organoids

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Cardiovascular diseases are currently the main cause of death. The study of the pathogenesis and treatment of these diseases is still a major challenge. Traditional 2D cultured cells and animal models have certain limitations. Heart organoids as models can simulate the structure and function of the body, providing a new research strategy. This paper mainly discusses the development of organoids and their application in the study of the cardiac developmental process, drug screening and treatment of genetic and non-genetic diseases, concluding with their strengths and weaknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Brett Volmert, A.R., Fei Wang, Aniwat Juhong, Artem Kiselev, Aleksandra Kostina, Colin O’Hern, Priyadharshni Muniyandi, Aaron Wasserman, Amanda Huang, Yonatan Lewis-Israeli, ProfileSangbum Park, Zhen Qiu, ProfileChao Zhou, ProfileAitor Aguirre, A patterned human heart tube organoid model generated by pluripotent stem cell self-assembly. bioRxiv, 2022.

  • Brassard JA, Lutolf MP (2019) Engineering stem cell self-organization to build better organoids. Cell Stem Cell 24(6):860–876

    Article  CAS  PubMed  Google Scholar 

  • Buono MF et al (2020) Human cardiac organoids for modeling genetic cardiomyopathy. Cells 9(7):1733

    Article  CAS  Google Scholar 

  • Caluori G et al (2019) Non-invasive electromechanical cell-based biosensors for improved investigation of 3D cardiac models. Biosens Bioelectron 124–125:129–135

    Article  PubMed  Google Scholar 

  • Corrò C, Novellasdemunt L, Li VSW (2020) A brief history of organoids. Am J Physiol Cell Physiol 319(1):C151–C165

    Article  PubMed  PubMed Central  Google Scholar 

  • Drakhlis L et al (2021a) Human heart-forming organoids recapitulate early heart and foregut development. Nat Biotechnol 39(6):737–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Drakhlis L, Devadas SB, Zweigerdt R (2021b) Generation of heart-forming organoids from human pluripotent stem cells. Nat Protoc 16(12):5652–5672

    Article  CAS  PubMed  Google Scholar 

  • Fatehullah A, Tan SH, Barker N (2016) Organoids as an in vitro model of human development and disease. Nat Cell Biol 18(3):246–254

    Article  PubMed  Google Scholar 

  • Firth AL et al (2015) Functional gene correction for cystic fibrosis in lung epithelial cells generated from patient iPSCs. Cell Rep 12(9):1385–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang P et al (2018) Generation of spatial-patterned early-developing cardiac organoids using human pluripotent stem cells. Nat Protoc 13(4):723–737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoang P et al (2021) Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Reports 16(5):1228–1244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hockemeyer D, Jaenisch R (2016) Induced pluripotent stem cells meet genome editing. Cell Stem Cell 18(5):573–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofbauer P et al (2021) Cardioids reveal self-organizing principles of human cardiogenesis. Cell 184(12):3299-3317.e22

    Article  CAS  PubMed  Google Scholar 

  • Hughes JP et al (2011) Principles of early drug discovery. Br J Pharmacol 162(6):1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur S et al (2021) Non-matrigel scaffolds for organoid cultures. Cancer Lett 504:58–66

    Article  CAS  PubMed  Google Scholar 

  • Kim H et al (2022) Progress in multicellular human cardiac organoids for clinical applications. Cell Stem Cell 29(4):503–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitsuka T et al (2019) 2-Cl-C OXT-A stimulates contraction through the suppression of phosphodiesterase activity in human induced pluripotent stem cell-derived cardiac organoids. PLoS ONE 14(7):e0213114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lancaster MA et al (2013) Cerebral organoids model human brain development and microcephaly. Nature 501(7467):373–379

    Article  CAS  PubMed  Google Scholar 

  • Lee J et al (2020) In vitro generation of functional murine heart organoids via FGF4 and extracellular matrix. Nat Commun 11(1):4283

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis-Israeli YR et al (2021) Self-assembling human heart organoids for the modeling of cardiac development and congenital heart disease. Nat Commun 12(1):5142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413

    Article  CAS  PubMed  Google Scholar 

  • Mills RJ et al (2017) Functional screening in human cardiac organoids reveals a metabolic mechanism for cardiomyocyte cell cycle arrest. Proc Natl Acad Sci U S A 114(40):E8372-e8381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mills RJ et al (2019) Drug screening in human PSC-cardiac organoids identifies pro-proliferative compounds acting via the mevalonate pathway. Cell Stem Cell 24(6):895-907.e6

    Article  CAS  PubMed  Google Scholar 

  • Ming Y et al (2022) Longitudinal morphological and functional characterization of human heart organoids using optical coherence tomography. Biosens Bioelectron 207:114136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakano T et al (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    Article  CAS  PubMed  Google Scholar 

  • Noor N et al (2019) 3D Printing of personalized thick and perfusable cardiac patches and hearts. Adv Sci (weinh) 6(11):1900344

    Article  PubMed  PubMed Central  Google Scholar 

  • Nugraha B et al (2019) Human cardiac organoids for disease modeling. Clin Pharmacol Ther 105(1):79–85

    Article  PubMed  Google Scholar 

  • Park SE, Georgescu A (2019) Organoids-on-a-chip. Science 364(6444):960–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauli C et al (2017) Personalized in vitro and in vivo cancer models to guide precision medicine. Cancer Discov 7(5):462–477

    Article  PubMed  PubMed Central  Google Scholar 

  • Prior N, Inacio P, Huch M (2019) Liver organoids: from basic research to therapeutic applications. Gut 68(12):2228–2237

    Article  CAS  PubMed  Google Scholar 

  • Richards DJ et al (2020) Human cardiac organoids for the modelling of myocardial infarction and drug cardiotoxicity. Nat Biomed Eng 4(4):446–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi G et al (2021) Capturing Cardiogenesis in Gastruloids. Cell Stem Cell 28(2):230-240.e6

    Article  CAS  PubMed  Google Scholar 

  • Roth TL, Marson A (2021) Genetic Disease and Therapy. Annu Rev Pathol 16:145–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T et al (2009) Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459(7244):262–265

    Article  CAS  PubMed  Google Scholar 

  • Seguret M et al (2021) Cardiac organoids to model and heal heart failure and cardiomyopathies. Biomedicines 9(5):563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidlitz T, Koo BK (2021) Gastric organoids-an in vitro model system for the study of gastric development and road to personalized medicine. Cell Death Differ 28(1):68–83

    Article  PubMed  Google Scholar 

  • Shinnawi R et al (2019) Modeling reentry in the short QT syndrome with human-induced pluripotent stem cell-derived cardiac cell sheets. J Am Coll Cardiol 73(18):2310–2324

    Article  PubMed  Google Scholar 

  • Skardal A et al (2020) Drug compound screening in single and integrated multi-organoid body-on-a-chip systems. Biofabrication 12(2):025017

    Article  CAS  PubMed  Google Scholar 

  • Voges HK et al (2017) Development of a human cardiac organoid injury model reveals innate regenerative potential. Development 144(6):1118–1127

    CAS  PubMed  Google Scholar 

  • Wimmer RA et al (2019) Generation of blood vessel organoids from human pluripotent stem cells. Nat Protoc 14(11):3082–3100

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y et al (2017) Fusion of regionally specifieD hPSC-derived organoids models human brain development and interneuron migration. Cell Stem Cell 21(3):383-398.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonatan Israeli, M.G., Kristen Ball, Aaron Wasserman, Jinyun Zou, Guangming Ni, View ORCID ProfileChao Zhou, View ORCID ProfileAitor Aguirre, Generation of Heart Organoids Modeling Early Human Cardiac Development Under Defined Conditions. bioRxiv, 2020.

Download references

Funding

This study was supported by the National Key R&D Program of China (2022YFA1104300, 2021YFA1101902), the National Natural Science Foundation of China (82241202, 82170364, 81970223, 82000263), the Natural Science Foundation of Jiangsu Province (BK20201409), Jiangsu Cardiovascular Medicine Innovation Center (CXZX202210).

Author information

Authors and Affiliations

Authors

Contributions

JL, JY, DZ, WL and SH: wrote and revised the manuscript. All authors read, edited and approved the manuscript.

Corresponding authors

Correspondence to Wei Lei or Shijun Hu.

Ethics declarations

Conflicts of interest

All the authors have no conflicts of interest to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Yang, J., Zhao, D. et al. Promises and challenges of cardiac organoids. Mamm Genome 34, 351–356 (2023). https://doi.org/10.1007/s00335-023-09987-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-023-09987-y

Navigation