Skip to main content

Advertisement

Log in

Missing heritability of Wilson disease: a search for the uncharacterized mutations

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Wilson disease (WD), a copper metabolism disorder caused by mutations in ATP7B, manifests heterogeneous clinical features. Interestingly, in a fraction of clinically diagnosed WD patients, mutations in ATP7B appears to be missing. In this review we discuss the plausible explanations of this missing heritability and propose a workflow that can identify the hidden mutations. Mutation analyses of WD generally includes targeted sequencing of ATP7B exons, exon–intron boundaries, and rarely, the proximal promoter region. We propose that variants in the distal cis-regulatory elements and/or deep intronic variants that impact splicing might well represent the hidden mutations. Heterozygous del/ins that remain refractory to conventional PCR-sequencing method may also represent such mutations. In this review, we also hypothesize that mutations in the key copper metabolism genes, like, ATOX1, COMMD1, and SLC31A1, could possibly lead to a WD-like phenotype. In fact, WD does present overlapping symptoms with other rare genetic disorders; hence, the possibility of a misdiagnosis and thus adding to missing heritability cannot be excluded. In this regard, it seems that whole-genome analysis will provide a comprehensive and rapid molecular diagnosis of WD. However, considering the associated cost for such a strategy, we propose an alternative customized screening schema of WD which include targeted sequencing of ATP7B locus as well as other key copper metabolism genes. Success of such a schema has been tested in a pilot study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Acevedo KM, Hung YH, Dalziel AH, Li QX, Laughton K, Wikhe K, Rembach A, Roberts B, Masters CL, Bush AI, Camakaris J (2011) Copper promotes the trafficking of the amyloid precursor protein. J Biol Chem 286:8252–8262

    Article  CAS  PubMed  Google Scholar 

  • Al Jumah M, Majumdar R, Al Rajeh S, Awada A, Al Zaben A, Al Traif I, Al Jumah AR, Rehana Z (2004) A clinical and genetic study of 56 Saudi Wilson disease patients: identification of Saudi-specific mutations. Eur J Neurol 11:121–124

    Article  CAS  PubMed  Google Scholar 

  • Antos A, Litwin T, Skowronska M, Kurkowska-Jastrzebska I, Czlonkowska A (2020) Pitfalls in diagnosing Wilson’s Disease by genetic testing alone: the case of a 47-year-old woman with two pathogenic variants of the ATP7B gene. Neurol Neurochir Pol 54:478–480

    Article  PubMed  Google Scholar 

  • Anwarullah A, Paramasivam N, Abbasi R, Khan K, Sultan A, Schlesner M, von Engelhardt J, Ahmad N, Aslam M (2017) A report of whole-genome sequencing in neurologic Wilson’s disease. Neurol India 65:629–631

    Article  PubMed  Google Scholar 

  • Bandmann O, Weiss KH, Kaler SG (2015) Wilson’s disease and other neurological copper disorders. Lancet Neurol 14:103–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bansagi B, Lewis-Smith D, Pal E, Duff J, Griffin H, Pyle A, Muller JS, Rudas G, Aranyi Z, Lochmuller H, Chinnery PF, Horvath R (2016) Phenotypic convergence of Menkes and Wilson disease. Neurology Genetics 2:e119

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaby-Haas CE, Merchant SS (2014) Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 289:28129–28136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boga S, Jain D, Schilsky ML (2015) Presentation of Progressive familial intrahepatic cholestasis type 3 mimicking Wilson disease: molecular genetic diagnosis and response to treatment. Pediatr Gastroenterol Hepatol Nutr 18:202–208

    Article  PubMed  PubMed Central  Google Scholar 

  • Bost M, Piguet-Lacroix G, Parant F, Wilson CM (2012) Molecular analysis of Wilson patients: direct sequencing and MLPA analysis in the ATP7B gene and Atox1 and COMMD1 gene analysis. J Trace Elem Med Biol 26:97–101

    Article  CAS  PubMed  Google Scholar 

  • Bull PC, Thomas GR, Rommens JM, Forbes JR, Cox DW (1993) The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene. Nat Genet 5:327–337

    Article  CAS  PubMed  Google Scholar 

  • Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, O’Neill RR, van Diggelen OP, Elleder M, Patterson MC, Brady RO, Vanier MT, Pentchev PG, Tagle DA (1997) Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 277:228–231

    Article  CAS  PubMed  Google Scholar 

  • Chen HI, Jagadeesh KA, Birgmeier J, Wenger AM, Guturu H, Schelley S, Bernstein JA, Bejerano G (2018) An MTF1 binding site disrupted by a homozygous variant in the promoter of ATP7B likely causes Wilson Disease. Eur J Hum Genet 26:1810–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng Y, Liang H, Cai NL, Guo L, Huang YG, Song YZ (2017) Clinical features and MYO5B mutations of a family affected by microvillus inclusion disease. Zhongguo dang dai er ke za zhi = Chin J Contemp Pediatr 19:968–974

    Google Scholar 

  • Choi EK, Nguyen TT, Gupta N, Iwase S, Seo YA (2018) Functional analysis of SLC39A8 mutations and their implications for manganese deficiency and mitochondrial disorders. Sci Rep 8:3163

    Article  PubMed  PubMed Central  Google Scholar 

  • Chuang LM, Tai TY, Wang TR, Chang YC, Chen KH, Lin RS, Lin BJ (1991) Esterase D and retinoblastoma gene loci are tightly linked to Wilson’s disease in Chinese pedigrees from Taiwan. Hum Genet 87:465–468

    Article  CAS  PubMed  Google Scholar 

  • Coffey AJ, Durkie M, Hague S, McLay K, Emmerson J, Lo C, Klaffke S, Joyce CJ, Dhawan A, Hadzic N, Mieli-Vergani G, Kirk R, Elizabeth Allen K, Nicholl D, Wong S, Griffiths W, Smithson S, Giffin N, Taha A, Connolly S, Gillett GT, Tanner S, Bonham J, Sharrack B, Palotie A, Rattray M, Dalton A, Bandmann O (2013) A genetic study of Wilson’s disease in the United Kingdom. Brain 136:1476–1487

    Article  PubMed  PubMed Central  Google Scholar 

  • Collins CJ, Yi F, Dayuha R, Duong P, Horslen S, Camarata M, Coskun AK, Houwen RHJ, Pop TL, Zoller H, Yoo HW, Jung SW, Weiss KH, Schilsky ML, Ferenci P, Hahn S (2021) Direct measurement of ATP7B peptides is highly effective in the diagnosis of Wilson disease. Gastroenterology 160(7):2367–2382

    Article  CAS  PubMed  Google Scholar 

  • Consortium EP (2004) The ENCODE (ENCyclopedia Of DNA elements) project. Science 306:636–640

    Article  Google Scholar 

  • Costantino L, Rusconi D, Solda G, Seia M, Paracchini V, Porcaro L, Asselta R, Colombo C, Duga S (2013) Fine characterization of the recurrent c.1584+18672A>G deep-intronic mutation in the cystic fibrosis transmembrane conductance regulator gene. Am J Respir Cell Mol Biol 48:619–625

    Article  CAS  PubMed  Google Scholar 

  • Cullen LM, Prat L, Cox DW (2003) Genetic variation in the promoter and 5′ UTR of the copper transporter, ATP7B, in patients with Wilson disease. Clin Genet 64:429–432

    Article  CAS  PubMed  Google Scholar 

  • Czlonkowska A, Litwin T, Dusek P, Ferenci P, Lutsenko S, Medici V, Rybakowski JK, Weiss KH, Schilsky ML (2018) Wilson Disease. Nat Rev Dis Primers 4:21

    Article  PubMed  PubMed Central  Google Scholar 

  • Das SK, Ray K (2006) Wilson’s disease: an update. Nat Clin Pract Neurol 2:482–493

    Article  PubMed  Google Scholar 

  • Das S, Maji S, Ruturaj Bhattacharya I, Saha T, Naskar N, Gupta A (2020) Retromer retrieves the Wilson disease protein ATP7B from endolysosomes in a copper-dependent manner. J Cell Sci 133(24):jcs246819

    Article  CAS  PubMed  Google Scholar 

  • Dobkin C, Pergolizzi RG, Bahre P, Bank A (1983) Abnormal splice in a mutant human beta-globin gene not at the site of a mutation. Proc Natl Acad Sci USA 80:1184–1188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Troelsen JT, Boyd M, Eiberg H, Hansen L, Hussain MS, Rehman S, Azhar A, Ali A, Bakhtiar SM, Tommerup N, Baig SM, Kjaer KW (2010) Preaxial polydactyly/triphalangeal thumb is associated with changed transcription factor-binding affinity in a family with a novel point mutation in the long-range cis-regulatory element ZRS. Eur J Hum Genet 18:733–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folhoffer A, Ferenci P, Csak T, Horvath A, Hegedus D, Firneisz G, Osztovits J, Kosa JP, Willheim-Polli C, Szonyi L, Abonyi M, Lakatos PL, Szalay F (2007) Novel mutations of the ATP7B gene among 109 Hungarian patients with Wilson’s disease. Eur J Gastroenterol Hepatol 19:105–111

    Article  CAS  PubMed  Google Scholar 

  • Forman OP, Boursnell ME, Dunmore BJ, Stendall N, van den Sluis B, Fretwell N, Jones C, Wijmenga C, Rothuizen J, van Oost BA, Holmes NG, Binns MM, Jones P (2005) Characterization of the COMMD1 (MURR1) mutation causing copper toxicosis in Bedlington terriers. Anim Genet 36:497–501

    CAS  PubMed  Google Scholar 

  • Fu X, Rinaldo P, Hahn SH, Kodama H, Packman S (2003) Mutation analysis of copper transporter genes in patients with ethylmalonic encephalopathy, mitochondriopathies and copper deficiency phenotypes. J Inherit Metab Dis 26:55–66

    Article  CAS  PubMed  Google Scholar 

  • Gomes A, Dedoussis GV (2016) Geographic distribution of ATP7B mutations in Wilson disease. Ann Hum Biol 43:1–8

    Article  PubMed  Google Scholar 

  • Guo Y, Smith K, Lee J, Thiele DJ, Petris MJ (2004) Identification of methionine-rich clusters that regulate copper-stimulated endocytosis of the human Ctr1 copper transporter. J Biol Chem 279:17428–17433

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Lutsenko S (2009) Human copper transporters: mechanism, role in human diseases and therapeutic potential. Future Med Chem 1:1125–1142

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Lutsenko S (2012) Evolution of copper transporting ATPases in eukaryotic organisms. Curr Genomics 13:124–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Aikath D, Neogi R, Datta S, Basu K, Maity B, Trivedi R, Ray J, Das SK, Gangopadhyay PK, Ray K (2005) Molecular pathogenesis of Wilson disease: haplotype analysis, detection of prevalent mutations and genotype-phenotype correlation in Indian patients. Hum Genet 118:49–57

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Schell MJ, Bhattacharjee A, Lutsenko S, Hubbard AL (2016) Myosin Vb mediates Cu+ export in polarized hepatocytes. J Cell Sci 129:1179–1189

    CAS  PubMed  PubMed Central  Google Scholar 

  • Harada M, Kawaguchi T, Kumemura H, Terada K, Ninomiya H, Taniguchi E, Hanada S, Baba S, Maeyama M, Koga H, Ueno T, Furuta K, Suganuma T, Sugiyama T, Sata M (2005) The Wilson disease protein ATP7B resides in the late endosomes with Rab7 and the Niemann-Pick C1 protein. Am J Pathol 166:499–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hermann W (2019) Classification and differential diagnosis of Wilson’s disease. Ann Transl Med 7:S63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogarth P (2015) Neurodegeneration with brain iron accumulation: diagnosis and management. J Mov Disord 8:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Huppke P, Brendel C, Kalscheuer V, Korenke GC, Marquardt I, Freisinger P, Christodoulou J, Hillebrand M, Pitelet G, Wilson C, Gruber-Sedlmayr U, Ullmann R, Haas S, Elpeleg O, Nurnberg G, Nurnberg P, Dad S, Moller LB, Kaler SG, Gartner J (2012) Mutations in SLC33A1 cause a lethal autosomal-recessive disorder with congenital cataracts, hearing loss, and low serum copper and ceruloplasmin. Am J Hum Genet 90:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Farias GG, Bonifacino JS (2015) Polarized sorting of the copper transporter ATP7B in neurons mediated by recognition of a dileucine signal by AP-1. Mol Biol Cell 26:218–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Kahra D, Kovermann M, Wittung-Stafshede P (2016) The C-terminus of human copper importer Ctr1 acts as a binding site and transfers copper to Atox1. Biophys J 110:95–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaler S, Batzios S, Tal G, DiStasio A, Peng Y, Charalambous C, Nicolaides P, Kamsteeg E-J, Korman S, Mandel H, Steinbach P, Yi L, Fair S, Heste M, Drousiotou A (2022) OP004: newly identified disorder of copper metabolism caused by variants in CTR1, a high-affinity copper transporter. Genet Med 24:S335–S336

    Article  Google Scholar 

  • Kluska A, Kulecka M, Litwin T, Dziezyc K, Balabas A, Piatkowska M, Paziewska A, Dabrowska M, Mikula M, Kaminska D, Wiernicka A, Socha P, Czlonkowska A, Ostrowski J (2019) Whole-exome sequencing identifies novel pathogenic variants across the ATP7B gene and some modifiers of Wilson’s disease phenotype. Liver Int: Official J Int Assoc Study Liver 39:177–186

    Article  CAS  Google Scholar 

  • Koboldt DC, Hickey SE, Chaudhari BP, Mihalic Mosher T, Bedrosian T, Crist E, Kaler SG, McBride K, White P, Wilson RK (2020) Early-onset Wilson disease caused by ATP7B exon skipping associated with intronic variant. Cold Spring Harb Mol Case Stud 6(3):a005306

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumari N, Kumar A, Pal A, Thapa BR, Modi M, Prasad R (2019) In-silico analysis of novel p. (Gly14Ser) variant of ATOX1 gene: plausible role in modulating ATOX1-ATP7B interaction. Mol Biol Rep 46:3307–3313

    Article  CAS  PubMed  Google Scholar 

  • Lebon S, Minai L, Chretien D, Corcos J, Serre V, Kadhom N, Steffann J, Pauchard JY, Munnich A, Bonnefont JP, Rotig A (2007) A novel mutation of the NDUFS7 gene leads to activation of a cryptic exon and impaired assembly of mitochondrial complex I in a patient with Leigh syndrome. Mol Genet Metab 92:104–108

    Article  CAS  PubMed  Google Scholar 

  • Lee BH, Kim JH, Lee SY, Jin HY, Kim KJ, Lee JJ, Park JY, Kim GH, Choi JH, Kim KM, Yoo HW (2011) Distinct clinical courses according to presenting phenotypes and their correlations to ATP7B mutations in a large Wilson’s disease cohort. Liver Int 31:831–839

    Article  CAS  PubMed  Google Scholar 

  • Liu WL, Li F, Liu L, Chen W, He ZX, Gu H, Ai R (2020) A novel gross deletion and breakpoint junction sequence analysis of ATP7B in a Chinese family with Wilson disease using nextgeneration sequencing and Sanger sequencing. Mol Med Rep 21:517–523

    CAS  PubMed  Google Scholar 

  • Locke JM, Hysenaj G, Wood AR, Weedon MN, Harries LW (2015) Targeted allelic expression profiling in human islets identifies cis-regulatory effects for multiple variants identified by type 2 diabetes genome-wide association studies. Diabetes 64:1484–1491

    Article  CAS  PubMed  Google Scholar 

  • Loudianos G, Dessi V, Lovicu M, Angius A, Figus A, Lilliu F, De Virgiliis S, Nurchi AM, Deplano A, Moi P, Pirastu M, Cao A (1999) Molecular characterization of wilson disease in the Sardinian population–evidence of a founder effect. Hum Mutat 14:294–303

    Article  CAS  PubMed  Google Scholar 

  • Magalhaes A, Burin MG, Souza CFM, de Bitencourt FH, Sebastiao FM, Silva TO, Vairo FPE, Schwartz IVD (2020) Transferrin isoelectric focusing for the investigation of congenital disorders of glycosylation: analysis of a ten-year experience in a Brazilian center. J Pediatr (rio j) 96:710–716

    Article  PubMed  Google Scholar 

  • Mak CM, Lam CW (2008) Diagnosis of Wilson’s disease: a comprehensive review. Crit Rev Clin Lab Sci 45:263–290

    Article  CAS  PubMed  Google Scholar 

  • Marchi G, Busti F, Lira Zidanes A, Castagna A, Girelli D (2019) Aceruloplasminemia: a severe neurodegenerative disorder deserving an early diagnosis. Front Neurosci 13:325

    Article  PubMed  PubMed Central  Google Scholar 

  • Margarit E, Bach V, Gomez D, Bruguera M, Jara P, Queralt R, Ballesta F (2005) Mutation analysis of Wilson disease in the Spanish population – identification of a prevalent substitution and eight novel mutations in the ATP7B gene. Clin Genet 68:61–68

    Article  CAS  PubMed  Google Scholar 

  • Marques-da-Silva D, Dos Reis FV, Monticelli M, Janeiro P, Videira PA, Witters P, Jaeken J, Cassiman D (2017) Liver involvement in congenital disorders of glycosylation (CDG). A systematic review of the literature. J Inherit Metab Dis 40:195–207

    Article  CAS  PubMed  Google Scholar 

  • Martinelli D, Dionisi-Vici C (2014) AP1S1 defect causing MEDNIK syndrome: a new adaptinopathy associated with defective copper metabolism. Ann N Y Acad Sci 1314:55–63

    Article  CAS  PubMed  Google Scholar 

  • Maynard CJ, Cappai R, Volitakis I, Cherny RA, White AR, Beyreuther K, Masters CL, Bush AI, Li QX (2002) Overexpression of Alzheimer’s disease amyloid-beta opposes the age-dependent elevations of brain copper and iron. J Biol Chem 277:44670–44676

    Article  CAS  PubMed  Google Scholar 

  • Medici V, LaSalle JM (2019) Genetics and epigenetic factors of Wilson disease. Ann Transl Med 7:S58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miguel-Escalada I, Pasquali L, Ferrer J (2015) Transcriptional enhancers: functional insights and role in human disease. Curr Opin Genet Dev 33:71–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mirowska-Guzel D, Litwin T, Gromadzka G, Czlonkowski A, Czlonkowska A (2013) Influence of BDNF polymorphisms on Wilson’s disease susceptibility and clinical course. Metab Brain Dis 28:447–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mordaunt CE, Kieffer DA, Shibata NM, Czlonkowska A, Litwin T, Weiss KH, Zhu Y, Bowlus CL, Sarkar S, Cooper S, Wan YY, Ali MR, LaSalle JM, Medici V (2019) Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers. Epigenetics Chromatin 12:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Mufti AR, Burstein E, Csomos RA, Graf PC, Wilkinson JC, Dick RD, Challa M, Son JK, Bratton SB, Su GL, Brewer GJ, Jakob U, Duckett CS (2006) XIAP Is a copper binding protein deregulated in Wilson’s disease and other copper toxicosis disorders. Mol Cell 21:775–785

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee S, Dutta S, Majumdar S, Biswas T, Jaiswal P, Sengupta M, Bhattacharya A, Gangopadhyay PK, Bavdekar A, Das SK, Ray K (2014) Genetic defects in Indian Wilson disease patients and genotype-phenotype correlation. Parkinsonism Relat Disord 20:75–81

    Article  PubMed  Google Scholar 

  • Nemeth D, Arvai K, Horvath P, Kosa JP, Tobias B, Balla B, Folhoffer A, Krolopp A, Lakatos PA, Szalay F (2016) Clinical use of next-generation sequencing in the diagnosis of Wilson’s disease. Gastroenterol Res Pract 2016:4548039

    Article  PubMed  Google Scholar 

  • Nicastro E, Ranucci G, Vajro P, Vegnente A, Iorio R (2010) Re-evaluation of the diagnostic criteria for Wilson disease in children with mild liver disease. Hepatology 52:1948–1956

    Article  PubMed  Google Scholar 

  • O’Brien RJ, Wong PC (2011) Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci 34:185–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Panichareon B, Taweechue K, Thongnoppakhun W, Aksornworanart M, Pithukpakorn M, Yenchitsomanus PT, Limwongse C, Limjindaporn T (2011) Six novel ATP7B mutations in Thai patients with Wilson disease. Eur J Med Genet 54:103–107

    Article  PubMed  Google Scholar 

  • Parisi S, Polishchuk EV, Allocca S, Ciano M, Musto A, Gallo M, Perone L, Ranucci G, Iorio R, Polishchuk RS, Bonatti S (2018) Characterization of the most frequent ATP7B mutation causing Wilson disease in hepatocytes from patient induced pluripotent stem cells. Sci Rep 8:6247

    Article  PubMed  PubMed Central  Google Scholar 

  • Park S, Park JY, Kim GH, Choi JH, Kim KM, Kim JB, Yoo HW (2007) Identification of novel ATP7B gene mutations and their functional roles in Korean patients with Wilson disease. Hum Mutat 28:1108–1113

    Article  CAS  PubMed  Google Scholar 

  • Polishchuk EV, Concilli M, Iacobacci S, Chesi G, Pastore N, Piccolo P, Paladino S, Baldantoni D, Van Sven ICD, Chan J, Chang CJ, Amoresano A, Pane F, Pucci P, Tarallo A, Parenti G, Brunetti-Pierri N, Settembre C, Ballabio A, Polishchuk RS (2014) Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev Cell 29:686–700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poon KS, Tan KM, Koay ES (2016) Targeted next-generation sequencing of the ATP7B gene for molecular diagnosis of Wilson disease. Clin Biochem 49:166–171

    Article  CAS  PubMed  Google Scholar 

  • Porubsky D, Ebert P, Audano PA, Vollger MR, Harvey WT, Marijon P, Ebler J, Munson KM, Sorensen M, Sulovari A, Haukness M, Ghareghani M, Human Genome Structural Varaition C, Lansdorp PM, Paten B, Devine SE, Sanders AD, Lee C, Chaisson MJP, Korbel JO, Eichler EE, Marschall T (2021) Fully phased human genome assembly without parental data using single-cell strand sequencing and long reads. Nat Biotechnol 39:302–308

    Article  CAS  PubMed  Google Scholar 

  • Przybylkowski A, Gromadzka G, Wawer A, Grygorowicz T, Cybulska A, Czlonkowska A (2013) Intestinal expression of metal transporters in Wilson’s disease. Biometals 26:925–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Przybylkowski A, Gromadzka G, Czlonkowska A (2014) Polymorphisms of metal transporter genes DMT1 and ATP7A in Wilson’s disease. J Trace Elem Med Biol 28:8–12

    Article  CAS  PubMed  Google Scholar 

  • Quadri M, Kamate M, Sharma S, Olgiati S, Graafland J, Breedveld GJ, Kori I, Hattiholi V, Jain P, Aneja S, Kumar A, Gulati P, Goel M, Talukdar B, Bonifati V (2015) Manganese transport disorder: novel SLC30A10 mutations and early phenotypes. Mov Disord : Official J Mov Disord Soc 30:996–1001

    Article  CAS  Google Scholar 

  • Rodriguez-Quiroga SA, Rosales J, Arakaki T, Cordoba M, Gonzalez-Moron D, Medina N, Garretto NS, Kauffman MA (2015) Timely diagnosis of Wilson’s disease using whole exome sequencing. Parkinsonism Relat Disord 21:1375–1377

    Article  PubMed  Google Scholar 

  • Roy S, Ganguly K, Pal P, Ghosh S, Das SK, Gangopadhyay PK, Bavdekar A, Ray K, Sengupta M, Ray J (2018) Influence of Apolipoprotein E polymorphism on susceptibility of Wilson disease. Ann Hum Genet 82:53–59

    Article  CAS  PubMed  Google Scholar 

  • Roy S, McCann CJ, Ralle M, Ray K, Ray J, Lutsenko S, Jayakanthan S (2020) Analysis of Wilson disease mutations revealed that interactions between different ATP7B mutants modify their properties. Sci Rep 10:13487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Monteagudo A, Alvarez-Sauco M, Sastre I, Martinez-Torres I, Lupo V, Berenguer M, Espinos C (2020) Genetics of Wilson disease and Wilson-like phenotype in a clinical series from eastern Spain. Clin Genet 97:758–763

    Article  CAS  PubMed  Google Scholar 

  • Schneider SA, Dusek P, Hardy J, Westenberger A, Jankovic J, Bhatia KP (2013) Genetics and pathophysiology of neurodegeneration with brain iron accumulation (NBIA). Curr Neuropharmacol 11:59–79

    CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamelou M, Tuschl K, Chong WK, Burroughs AK, Mills PB, Bhatia KP, Clayton PT (2012) Dystonia with brain manganese accumulation resulting from SLC30A10 mutations: a new treatable disorder. Mov Disord 27:1317–1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart DJ, Short KK, Maniaci BN, Burkhead JL (2019) COMMD1 and PtdIns(4,5)P2 interaction maintain ATP7B copper transporter trafficking fidelity in HepG2 cells. J cell sci 6:33

    Google Scholar 

  • Sticova E, Neroldova M, Kotalova R, Subhanova I, Jirsa M (2020) ABCB4 disease mimicking morbus Wilson: A potential diagnostic pitfall. Biomed Pap Med Fac Univ Palacky, Olomouc, Czechoslov 164:121–125

    Article  Google Scholar 

  • Summers KL, Dolgova NV, Gagnon KB, Sopasis GJ, James AK, Lai B, Sylvain NJ, Harris HH, Nichol HK, George GN, Pickering IJ (2020) PBT2 acts through a different mechanism of action than other 8-hydroxyquinolines: an X-ray fluorescence imaging study. Metallomics 12:1979–1994

    Article  CAS  PubMed  Google Scholar 

  • Taly AB, Meenakshi-Sundaram S, Sinha S, Swamy HS, Arunodaya GR (2007) Wilson disease: description of 282 patients evaluated over 3 decades. Medicine 86:112–121

    Article  PubMed  Google Scholar 

  • Tan X, Guan H, Yang Y, Luo S, Hou L, Chen H, Li J (2020) Cu(II) disrupts autophagy-mediated lysosomal degradation of oligomeric Abeta in microglia via mTOR-TFEB pathway. Toxicol Appl Pharmacol 401:115090

    Article  CAS  PubMed  Google Scholar 

  • Todorov T, Balakrishnan P, Savov A, Socha P, Schmidt HH (2016) Intragenic deletions in ATP7B as an unusual molecular genetics mechanism of Wilson’s disease pathogenesis. PLoS ONE 11:e0168372

    Article  PubMed  PubMed Central  Google Scholar 

  • Tumer Z (2013) An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat 34:417–429

    Article  PubMed  Google Scholar 

  • Tuschl K, Meyer E, Valdivia LE, Zhao N, Dadswell C, Abdul-Sada A, Hung CY, Simpson MA, Chong WK, Jacques TS, Woltjer RL, Eaton S, Gregory A, Sanford L, Kara E, Houlden H, Cuno SM, Prokisch H, Valletta L, Tiranti V, Younis R, Maher ER, Spencer J, Straatman-Iwanowska A, Gissen P, Selim LA, Pintos-Morell G, Coroleu-Lletget W, Mohammad SS, Yoganathan S, Dale RC, Thomas M, Rihel J, Bodamer OA, Enns CA, Hayflick SJ, Clayton PT, Mills PB, Kurian MA, Wilson SW (2016) Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun 7:11601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaz-Drago R, Custodio N, Carmo-Fonseca M (2017) Deep intronic mutations and human disease. Hum Genet 136:1093–1111

    Article  CAS  PubMed  Google Scholar 

  • Vidyadhara DJ, Lee JE, Chandra SS (2019) Role of the endolysosomal system in Parkinson’s disease. J Neurochem 150:487–506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wan L, Tsai CH, Hsu CM, Huang CC, Yang CC, Liao CC, Wu CC, Hsu YA, Lee CC, Liu SC, Lin WD, Tsai FJ (2010) Mutation analysis and characterization of alternative splice variants of the Wilson disease gene ATP7B. Hepatology 52:1662–1670

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Weinman SA (2004) Involvement of chloride channels in hepatic copper metabolism: ClC-4 promotes copper incorporation into ceruloplasmin. Gastroenterology 126:1157–1166

    Article  CAS  PubMed  Google Scholar 

  • Wang LH, Huang YQ, Shang X, Su QX, Xiong F, Yu QY, Lin HP, Wei ZS, Hong MF, Xu XM (2011) Mutation analysis of 73 southern Chinese Wilson’s disease patients: identification of 10 novel mutations and its clinical correlation. J Hum Genet 56:660–665

    Article  CAS  PubMed  Google Scholar 

  • Wei Z, Huang Y, Liu A, Diao S, Yu Q, Peng Z, Hong M (2014) Mutational characterization of ATP7B gene in 103 Wilson’s disease patients from Southern China: identification of three novel mutations. NeuroReport 25:1075–1080

    Article  CAS  PubMed  Google Scholar 

  • Weiss KH, Runz H, Noe B, Gotthardt DN, Merle U, Ferenci P, Stremmel W, Fullekrug J (2010) Genetic analysis of BIRC4/XIAP as a putative modifier gene of Wilson disease. J Inherit Metab Dis 33(Suppl 3):S233-240

    Article  PubMed  Google Scholar 

  • White AR, Reyes R, Mercer JF, Camakaris J, Zheng H, Bush AI, Multhaup G, Beyreuther K, Masters CL, Cappai R (1999) Copper levels are increased in the cerebral cortex and liver of APP and APLP2 knockout mice. Brain Res 842:439–444

    Article  CAS  PubMed  Google Scholar 

  • Woimant F, Djebrani-Oussedik N, Poujois A (2019) New tools for Wilson’s disease diagnosis: exchangeable copper fraction. Ann Transl Med 7:S70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woimant F, Poujois A, Bloch A, Jordi T, Laplanche JL, Morel H, Collet C (2020) A novel deep intronic variant in ATP7B in five unrelated families affected by Wilson disease. Mol Genet Genomic Med 8:e1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CS, Liang XL, Li JY, Yan ZW, Huang F (2005) Effect of the mutation of promoter region in Wilson disease ATP7B gene on the expression of reporter gene. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 22:566–568

    CAS  PubMed  Google Scholar 

  • Yasmeen S, Lund K, De Paepe A, De Bie S, Heiberg A, Silva J, Martins M, Skjorringe T, Moller LB (2014) Occipital horn syndrome and classical Menkes Syndrome caused by deep intronic mutations, leading to the activation of ATP7A pseudo-exon. Eur J Hum Genet 22:517–521

    Article  CAS  PubMed  Google Scholar 

  • Yu CH, Yang N, Bothe J, Tonelli M, Nokhrin S, Dolgova NV, Braiterman L, Lutsenko S, Dmitriev OY (2017) The metal chaperone Atox1 regulates the activity of the human copper transporter ATP7B by modulating domain dynamics. J Biol Chem 292:18169–18177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou B, Westaway SK, Levinson B, Johnson MA, Gitschier J, Hayflick SJ (2001) A novel pantothenate kinase gene (PANK2) is defective in Hallervorden-Spatz syndrome. Nat Genet 28:345–349

    Article  CAS  PubMed  Google Scholar 

  • Zhou XX, Li XH, Chen DB, Wu C, Feng L, Qin HL, Pu XY, Liang XL (2019) Injury factors and pathological features of toxic milk mice during different disease stages. Brain Behav 9:e01459

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are thankful to the Wilson’s disease patients and their family members. SR was supported by UGC-JRF fellowship from UGC, Govt. of India and SG was supported by a fellowship from DST-SERB, Govt. of India.

Funding

This study received no funding support.

Author information

Authors and Affiliations

Authors

Contributions

SR provided pipeline for selecting cis-regulatory element from ENCODE database and contributed to analysis of the result and drafted the manuscript; SG performed in silico analysis following the pipeline for selecting cis-regulatory element from ENCODE database; JR contributed to overall supervision of the project and reviewing of the manuscript; KR contributed to conceptualization of the study critical review of the manuscript and other intellectual inputs; MSG contributed to conceptualization of the study, overall supervision of the project, and reviewing of the manuscript.

Corresponding authors

Correspondence to Kunal Ray or Mainak Sengupta.

Ethics declarations

Competing interests

The authors declare no competing interest.

Ethical approval

This study did not include any human or animal subjects and/or patients’ clinical information.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Ghosh, S., Ray, J. et al. Missing heritability of Wilson disease: a search for the uncharacterized mutations. Mamm Genome 34, 1–11 (2023). https://doi.org/10.1007/s00335-022-09971-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-022-09971-y

Navigation