Skip to main content

Advertisement

Log in

Association of gene polymorphisms in MYH11 and TGF-β signaling with the susceptibility and clinical outcomes of DeBakey type III aortic dissection

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

To investigate the association of myosin heavy chain protein 11 (MYH11) and transforming growth factor β signaling-related gene polymorphisms with the susceptibility of DeBakey type III aortic dissection (AD) and its clinical outcomes. Four single-nucleotide polymorphism (SNPs) (MYH11 rs115364997, rs117593370, TGFB1 rs1800469, and TGFBR1 rs1626340) were analyzed in patients with DeBakey III AD (173) and healthy participants (335). Gene–gene and gene–environment interactions were evaluated using generalized multifactor dimensionality reduction. The patients were followed up for a median of 55.7 months. MYH11 rs115364997 G or TGFBR1 rs1626340 A carriers had an increased risk of DeBakey type III AD. MYH11, TGFB1, TGFBR1, and environment interactions contributed to the risk of DeBakey type III AD (cross-validation consistency = 10/10, P = 0.001). Dominant models of MYH11 rs115364997 AG + GG genotype (HR = 2.443; 95%CI: 1.096–5.445, P = 0.029), TGFB1 rs1800469 AG + GG (HR = 2.303; 95%CI: 1.069–4.96, P = 0.033) were associated with an increased risk of mortality in DeBakey type III AD. The dominant model of TGFB1 rs1800469 AG + GG genotype was associated with an increased risk of recurrence of chest pain in DeBakey type III AD (HR = 1.566; 95%CI: 1.018–2.378, P = 0.041). In conclusions, G carriers of MYH11 rs115364997 or TGFB1 rs1800469 may be the poor prognostic indicators of mortality and recurrent chest pain in DeBakey type III AD. The interactions of gene–gene and gene–environment are associated with the risk of DeBakey type III AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  • Adam B, Valentyna K, Bulat Z et al (2018) Genes associated with thoracic aortic aneurysm and dissection, an update and clinical implications. Aorta 06:013–020

    Article  Google Scholar 

  • Baas AF, Medic J, van’t Slot R et al (2010) Association of the TGF-beta receptor genes with abdominal aortic aneurysm. Eur J Hum Genet 18(2):240–244

    Article  CAS  PubMed  Google Scholar 

  • Booher AM, Isselbacher EM, Nienaber CA et al (2013) The IRAD classification system for characterizing survival after aortic dissection. Am J Med 126(8):730.e19–724.e19

    Article  Google Scholar 

  • Bossone E, Gorla R, LaBounty TM et al (2018) Presenting systolic blood pressure and outcomes in patients with acute aortic dissection. J Am Coll Cardiol 71(13):1432–1440

    Article  PubMed  Google Scholar 

  • De Cario R, Sticchi E, Lucarini L et al (2018) Role of TGFBR1 and TGFBR2 genetic variants in Marfan syndrome. J Vasc Surg 1:225-233.e5

    Article  Google Scholar 

  • Evangelista A, Isselbacher EM, Bossone E et al (2018) Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research. Circulation 137(17):1846–1860

    Article  PubMed  Google Scholar 

  • Feldo M, Kocki J, Feldo J et al (2015) CIDE-A gene expression in patients with obesity qualified for endovascular treatment of abdominal aorta aneurysm. Pol Przegl Chir 86(10):473–478

    Article  PubMed  Google Scholar 

  • Franken R, den Hartog AW, Radonic T (2015) Beneficial outcome of losartan therapy depends on type of fbn1 mutation in marfan syndrome. Circ Cardiovasc Genet 8:383–388

    Article  CAS  PubMed  Google Scholar 

  • Frismantiene A, Philippova M, Erne P et al (2018) Smooth muscle cell-driven vascular diseases and molecular mechanisms of VSMC plasticity. Cell Signal 52:48–64

    Article  CAS  PubMed  Google Scholar 

  • Fujiwara T, Takeda N, Hara H et al (2018) Distinct variants affecting differential splicing of TGFBR1 exon 5 cause either Loeys-Dietz syndrome or multiple self-healing squamous epithelioma. Eur J Hum Genet 26(8):1151–1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao F, Chambon P, Offermanns S et al (2014) Disruption of TGF-β signaling in smooth muscle cell prevents elastase-induced abdominal aortic aneurysm. Biochem Biophys Res Commun 1:137–143

    Article  CAS  Google Scholar 

  • Goumans M-J, Ten Dijke P (2018) TGF-β signaling in control of cardiovascular function. Cold Spring Harbor Perspect Biol 2:e022210

    Article  CAS  Google Scholar 

  • Haize G, Maria F, Reyes VM et al (2018) Characterization of carotid smooth muscle cells during phenotypic transition. Cells 3:23–25

    Google Scholar 

  • Harakalova M, van der Smagt J, de Kovel CG et al (2013) Incomplete segregation of MYH11 variants with thoracic aortic aneurysms and dissections and patent ductus arteriosus. Eur J Hum Genet 21(5):487–493

    Article  CAS  PubMed  Google Scholar 

  • Hipólito UV, Rocha JT, Martins-Oliveira A et al (2011) Chronic ethanol consumption reduces adrenomedullin-induced relaxation in the isolated rat aorta. Alcohol 45(8):805–814

    Article  PubMed  CAS  Google Scholar 

  • Howard DP, Banerjee A, Fairhead JF et al (2013) Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the Oxford Vascular Study. Circulation 127(20):2031–2037

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu JH, Wei H, Jaffe M et al (2015) Postnatal deletion of the Type II transforming growth factor-β receptor in smooth muscle cells causes severe aortopathy in mice. Arterioscler Thromb Vasc Biol 35(12):2647–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isselbacher EM, Lino Cardenas CL, Lindsay ME (2016) Hereditary influence in thoracic aortic aneurysm and dissection. Circulation 133:2516–2528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Akutsu K, Tamori Y et al (2008) Differences in atherosclerotic profiles between patients with thoracic and abdominal aortic aneurysms. Am J Cardiol 101:696–699

    Article  PubMed  Google Scholar 

  • Jacob AG, Smith CWJ (2017) Intron retention as a component of regulated gene expression programs. Hum Genet 136:1043–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jondeau G, Ropers J, Regalado E et al (2016) International registry of patients carrying TGFBR1 or TGFBR2 mutations, results of the MAC (Montalcino Aortic Consortium). Circ Cardiovasc Genet 9(6):548–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karimi A, Milewicz DM (2016) Structure of the elastin-contractile units in the thoracic aorta and how genes that cause thoracic aortic aneurysms and dissections disrupt this structure. Can J Cardiol 32(1):26–34

    Article  PubMed  Google Scholar 

  • Kim JB, Kim K, Lindsay ME et al (2015) Risk of rupture or dissection in descending thoracic aortic aneurysm. Circulation 132:1620–1629

    Article  PubMed  Google Scholar 

  • Larson A, Rinaldo L, Brinjikji W et al (2020) Intracranial vessel stenosis in a young patient with an MYH11 mutation, a case report and review of 2 prior cases. World Neurosurg 137:243–246

    Article  PubMed  Google Scholar 

  • Li W, Li Q, Jiao Y et al (2014) Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis. J Clin Investig 2:755–767

    Article  CAS  Google Scholar 

  • Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37(3):275–281

    Article  CAS  PubMed  Google Scholar 

  • Mizuguchi T, Collod-Beroud G, Akiyama T et al (2004) Heterozygous TGFBR2 mutations in Marfan syndrome. Nat Genet 36(8):855–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mussa FF, Horton JD, Moridzadeh R et al (2016) Acute aortic dissection and intramural hematoma, a systematic review. JAMA 316:754–763

    Article  PubMed  Google Scholar 

  • Norifumi T, Hironori H, Takayuki F et al (2018) TGF-β signaling-related genes and thoracic aortic aneurysms and dissections. Int J of Mol Sci 19:2125

    Article  CAS  Google Scholar 

  • Piechota-Polanczyk A, Jozkowicz A, Nowak W et al (2015) The abdominal aortic aneurysm and intraluminal thrombus, current concepts of development and treatment. Front Cardiovasc Med 26(2):19

    Google Scholar 

  • Pucci L, Pointet A, Good JM et al (2020) A new variant in the MYH11 gene in a familial case of thoracic aortic aneurysm. Ann Thorac Surg 109(4):e279–e281

    Article  PubMed  Google Scholar 

  • Renard M, Callewaert B, Baetens M et al (2013) Novel MYH11 and ACTA2 mutations reveal a role for enhanced TGFβ signaling in FTAAD. Int J Cardiol 2:314–321

    Article  Google Scholar 

  • Ruigrok YM, Baas AF, Medic J et al (2012) The transforming growth factor-β receptor genes and the risk of intracranial aneurysms. Int J Stroke 7(8):645–648

    Article  PubMed  Google Scholar 

  • Takeda N, Komuro I (2019) Genetic basis of hereditary thoracic aortic aneurysms and dissections. J Cardiol 2:136–143

    Article  Google Scholar 

  • Thompson AR, Cooper JA, Jones GT et al (2010) Assessment of the association between genetic polymorphisms in transforming growth factor beta, and its binding protein (LTBP), and the presence, and expansion, of abdominal aortic aneurysm. Atherosclerosis 209(2):367–373

    Article  CAS  PubMed  Google Scholar 

  • Utako Y, Noriaki A, Ryo I et al (2018) Proteomic analysis of aortic smooth muscle cell secretions reveals an association of myosin heavy chain 11 with abdominal aortic aneurysm. Am J Physiol Heart Circ Physiol 315(4):1012–1018

    Article  CAS  Google Scholar 

  • Wang G, Jacquet L, Karamariti E, Xu Q (2015) Origin and differentiation of vascular smooth muscle cells. J Physiol 593(14):3013–3030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu HM, Xu LF, Hou TT et al (2016) GMDR, versatile software for detecting gene–gene and gene–environment interactions underlying complex traits. Curr Genom 17(5):396–402

    Article  CAS  Google Scholar 

  • Yang P, Schmit BM, Fu C et al (2016) Smooth muscle cell-specific Tgfbr1 deficiency promotes aortic aneurysm formation by stimulating multiple signaling events. Sci Rep 6:35444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshiyama S, Chen Z, Okagaki T et al (2014) Nicotine exposure alters human vascular smooth muscle cell phenotype from a contractile to a synthetic type. Atherosclerosis 237:464–470

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Liu B, Wang Z et al (2019) Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics 9:6901–6919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo S, Xiong J, Wei Y et al (2015) Potential interactions between genetic polymorphisms of the transforming growth factor-β pathway and environmental factors in abdominal aortic aneurysms. Eur J Vasc Endovasc Surg 50(1):71–77

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the National Natural Science Foundation of China (NO.81660085) and the Construction of key laboratories in Xinjiang Uygur Autonomous Region (NO.2019D04017).

Author information

Authors and Affiliations

Authors

Contributions

YC and QY contributed to the study design, data collection, experiment implementation, statistical analysis, and manuscript writing and revision. PJ and LS contributed to the data collection and experiment implementation. XM and YM contributed to the study design, and manuscript revision and approval.

Corresponding author

Correspondence to Xiang Ma.

Ethics declarations

Conflict of interest

All authors have declared no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, Y., Yuan, Q., Jiang, P. et al. Association of gene polymorphisms in MYH11 and TGF-β signaling with the susceptibility and clinical outcomes of DeBakey type III aortic dissection. Mamm Genome 33, 555–563 (2022). https://doi.org/10.1007/s00335-021-09929-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-021-09929-6

Navigation