Skip to main content

Advertisement

Log in

ArcRNAs and the formation of nuclear bodies

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) have long been collectively and passively defined as transcripts that do not encode proteins. However, extensive functional studies performed over the last decade have enabled the classification of lncRNAs into multiple categories according to their functions and/or molecular properties. Architectual RNAs (arcRNAs) are a group of lncRNAs that serve as architectural components of submicron-scale cellular bodies or nonmembranous organelles, which are composed of specific sets of proteins and nucleic acids involved in particular molecular processes. In this review, we focus on arcRNAs that function in the nucleus, which provide a structural basis for the formation of nuclear bodies, nonmembranous organelles in the cell nucleus. We will summarize the current list of arcRNAs and proteins associated with classic and more recently discovered nuclear bodies and discuss general rules that govern the formation of nuclear bodies, emphasizing weak multivalent interactions mediated by innately flexible biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdalla MOA, Yamamoto T, Maehara K, Nogami J, Ohkawa Y, Miura H, Poonperm R, Hiratani I, Nakayama H, Nakao M, Saitoh N (2019) The Eleanor ncRNAs activate the topological domain of the ESR1 locus to balance against apoptosis. Nat Commun 10:3778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Adriaens C, Standaert L, Barra J, Latil M, Verfaillie A, Kalev P, Boeckx B, Wijnhoven PW, Radaelli E, Vermi W, Leucci E, Lapouge G, Beck B, van den Oord J, Nakagawa S, Hirose T, Sablina AA, Lambrechts D, Aerts S, Blanpain C, Marine JC (2016) p53 induces formation of NEAT1 lncRNA-containing paraspeckles that modulate replication stress response and chemosensitivity. Nat Med 22:861–868

    Article  CAS  PubMed  Google Scholar 

  • Adriaens C, Rambow F, Bervoets G, Silla T, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S, Jensen TH, Marine JC (2019) The long noncoding RNA NEAT1_1 is seemingly dispensable for normal tissue homeostasis and cancer cell growth. RNA 25:1681–1695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed ASI, Dong K, Liu J, Wen T, Yu L, Xu F, Kang X, Osman I, Hu G, Bunting KM, Crethers D, Gao H, Zhang W, Liu Y, Wen K, Agarwal G, Hirose T, Nakagawa S, Vazdarjanova A, Zhou J (2018) Long noncoding RNA NEAT1 (nuclear paraspeckle assembly transcript 1) is critical for phenotypic switching of vascular smooth muscle cells. Proc Natl Acad Sci USA 115:E8660–E8667

    Article  PubMed  PubMed Central  Google Scholar 

  • Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aly MK, Ninomiya K, Adachi S, Natsume T, Hirose T (2019) Two distinct nuclear stress bodies containing different sets of RNA-binding proteins are formed with HSATIII architectural noncoding RNAs upon thermal stress exposure. Biochem Biophys Res Commun 516:419–423

    Article  CAS  PubMed  Google Scholar 

  • Andergassen D, Smith ZD, Lewandowski JP, Gerhardinger C, Meissner A, Rinn JL (2019) In vivo Firre and Dxz4 deletion elucidates roles for autosomal gene regulation. Elife. https://doi.org/10.7554/eLife.47214

    Article  PubMed  PubMed Central  Google Scholar 

  • Audas TE, Jacob MD, Lee S (2012) Immobilization of proteins in the nucleolus by ribosomal intergenic spacer noncoding RNA. Mol Cell 45:147–157

    Article  CAS  PubMed  Google Scholar 

  • Audas TE, Audas DE, Jacob MD, Ho JJ, Khacho M, Wang M, Perera JK, Gardiner C, Bennett CA, Head T, Kryvenko ON, Jorda M, Daunert S, Malhotra A, Trinkle-Mulcahy L, Gonzalgo ML, Lee S (2016) Adaptation to stressors by systemic protein amyloidogenesis. Dev Cell 39:155–168

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat containing RNA and RNA surveillance factors at mammalian chromosome ends. Science 318:798–801

    Article  CAS  PubMed  Google Scholar 

  • Barr ML, Bertram EG (1949) A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163:676

    Article  CAS  PubMed  Google Scholar 

  • Barral A, Dejardin J (2020) Telomeric chromatin and TERRA. J Mol Biol 432:4244–4256

    Article  CAS  PubMed  Google Scholar 

  • Barutcu AR, Maass PG, Lewandowski JP, Weiner CL, Rinn JL (2018) A TAD boundary is preserved upon deletion of the CTCF-rich Firre locus. Nat Commun 9:1444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bassett AR, Akhtar A, Barlow DP, Bird AP, Brockdorff N, Duboule D, Ephrussi A, Ferguson-Smith AC, Gingeras TR, Haerty W, Higgs DR, Miska EA, Ponting CP (2014) Considerations when investigating lncRNA function in vivo. Elife 3:e03058

    Article  PubMed  PubMed Central  Google Scholar 

  • Basu A, Dong B, Krainer AR, Howe CC (1997) The intracisternal A-particle proximal enhancer-binding protein activates transcription and is identical to the RNA- and DNA-binding protein p54nrb/NonO. Mol Cell Biol 17:677–686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bates CM, Bates FS (2017) Block polymers - pure potential. Macromolecules 50:3–22

    Article  CAS  Google Scholar 

  • Beck M, Baumeister W (2016) Cryo-electron tomography: can it reveal the molecular sociology of cells in atomic detail? Trends Cell Biol 26:825–837

    Article  PubMed  Google Scholar 

  • Benavente R, Rose KM, Reimer G, Hugle-Dorr B, Scheer U (1987) Inhibition of nucleolar reformation after microinjection of antibodies to RNA polymerase I into mitotic cells. J Cell Biol 105:1483–1491

    Article  CAS  PubMed  Google Scholar 

  • Biamonti G, Vourc’h C (2010) Nuclear stress bodies. Cold Spring Harb Perspect Biol 2:a000695

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Julicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  • Brockdorff N, Bowness JS, Wei G (2020) Progress toward understanding chromosome silencing by Xist RNA. Genes Dev 34:733–744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown JA, Valenstein ML, Yario TA, Tycowski KT, Steitz JA (2012) Formation of triple-helical structures by the 3′-end sequences of MALAT1 and MENbeta noncoding RNAs. Proc Natl Acad Sci USA 109:19202–19207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cabianca DS, Casa V, Bodega B, Xynos A, Ginelli E, Tanaka Y, Gabellini D (2012) A long ncRNA links copy number variation to a polycomb/trithorax epigenetic switch in FSHD muscular dystrophy. Cell 149:819–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai Z, Cao C, Ji L, Ye R, Wang D, Xia C, Wang S, Du Z, Hu N, Yu X, Chen J, Wang L, Yang X, He S, Xue Y (2020) RIC-seq for global in situ profiling of RNA-RNA spatial interactions. Nature 582:432–437

    Article  CAS  PubMed  Google Scholar 

  • Carmo-Fonseca M, Berciano MT, Lafarga M (2010) Orphan nuclear bodies. Cold Spring Harb Perspect Biol 2:a000703

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Castello A, Fischer B, Frese CK, Horos R, Alleaume AM, Foehr S, Curk T, Krijgsveld J, Hentze MW (2016) Comprehensive identification of RNA-binding Domains in human cells. Mol Cell 63:696–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cerase A, Armaos A, Neumayer C, Avner P, Guttman M, Tartaglia GG (2019) Phase separation drives X-chromosome inactivation: a hypothesis. Nat Struct Mol Biol 26:331–334

    Article  CAS  PubMed  Google Scholar 

  • Chen LL, Carmichael GG (2009) Altered nuclear retention of mRNAs containing inverted repeats in human embryonic stem cells: functional role of a nuclear noncoding RNA. Mol Cell 35:467–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Lei EP (2019) Function and regulation of chromatin insulators in dynamic genome organization. Curr Opin Cell Biol 58:61–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Boisvert FM, Bazett-Jones DP, Richard S (1999) A role for the GSG domain in localizing Sam68 to novel nuclear structures in cancer cell lines. Mol Biol Cell 10:3015–3033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chiodi I, Biggiogera M, Denegri M, Corioni M, Weighardt F, Cobianchi F, Riva S, Biamonti G (2000) Structure and dynamics of hnRNP-labelled nuclear bodies induced by stress treatments. J Cell Sci 113(Pt 22):4043–4053

    Article  CAS  PubMed  Google Scholar 

  • Cho SW, Xu J, Sun R, Mumbach MR, Carter AC, Chen YG, Yost KE, Kim J, He J, Nevins SA, Chin SF, Caldas C, Liu SJ, Horlbeck MA, Lim DA, Weissman JS, Curtis C, Chang HY (2018) Promoter of lncRNA Gene PVT1 Is a tumor-suppressor dna boundary element. Cell 173:1398-1412 e1322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi S, Park C, Kim KE, Kim KK (2017) An in vitro technique to identify the RNA binding-site sequences for RNA-binding proteins. Biotechniques 63:28–33

    Article  CAS  PubMed  Google Scholar 

  • Chu C, Zhang QC, da Rocha ST, Flynn RA, Bharadwaj M, Calabrese JM, Magnuson T, Heard E, Chang HY (2015) Systematic discovery of Xist RNA binding proteins. Cell 161:404–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chujo T, Hirose T (2017) Nuclear bodies built on architectural long noncoding rnas: unifying principles of their construction and function. Mol Cells 40:889–896

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chujo T, Yamazaki T, Kawaguchi T, Kurosaka S, Takumi T, Nakagawa S, Hirose T (2017) Unusual semi-extractability as a hallmark of nuclear body-associated architectural noncoding RNAs. EMBO J 36:1447–1462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009) An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell 33:717–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshvar K, Pondick JV, Kim BM, Zhou C, York SR, Macklin JA, Abualteen A, Tan B, Sigova AA, Marcho C, Tremblay KD, Mager J, Choi MY, Mullen AC (2016) DIGIT is a conserved long noncoding RNA that regulates GSC expression to control definitive endoderm differentiation of embryonic stem cells. Cell Rep 17:353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daneshvar K, Ardehali MB, Klein IA, Hsieh FK, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W, Pondick JV, Gupta SK, Moran SP, Young RA, Kingston RE, Mullen AC (2020) lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 22:1211–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis BM, McCurrach ME, Taneja KL, Singer RH, Housman DE (1997) Expansion of a CUG trinucleotide repeat in the 3′ untranslated region of myotonic dystrophy protein kinase transcripts results in nuclear retention of transcripts. Proc Natl Acad Sci USA 94:7388–7393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding DQ, Okamasa K, Yamane M, Tsutsumi C, Haraguchi T, Yamamoto M, Hiraoka Y (2012) Meiosis-specific noncoding RNA mediates robust pairing of homologous chromosomes in meiosis. Science 336:732–736

    Article  CAS  PubMed  Google Scholar 

  • Ding DQ, Okamasa K, Katou Y, Oya E, Nakayama JI, Chikashige Y, Shirahige K, Haraguchi T, Hiraoka Y (2019) Chromosome-associated RNA-protein complexes promote pairing of homologous chromosomes during meiosis in Schizosaccharomyces pombe. Nat Commun 10:5598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dumbovic G, Biayna J, Banus J, Samuelsson J, Roth A, Diederichs S, Alonso S, Buschbeck M, Perucho M, Forcales SV (2018) A novel long non-coding RNA from NBL2 pericentromeric macrosatellite forms a perinucleolar aggregate structure in colon cancer. Nucleic Acids Res 46:5504–5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eissmann M, Gutschner T, Hammerle M, Gunther S, Caudron-Herger M, Gross M, Schirmacher P, Rippe K, Braun T, Zornig M, Diederichs S (2012) Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol 9:1076–1087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fei J, Jadaliha M, Harmon TS, Li ITS, Hua B, Hao Q, Holehouse AS, Reyer M, Sun Q, Freier SM, Pappu RV, Prasanth KV, Ha T (2017) Quantitative analysis of multilayer organization of proteins and RNA in nuclear speckles at super resolution. J Cell Sci 130:4180–4192

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feretzaki M, Pospisilova M, Valador Fernandes R, Lunardi T, Krejci L, Lingner J (2020) RAD51-dependent recruitment of TERRA lncRNA to telomeres through R-loops. Nature 587:303–308

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AH, Lam YW, Leung AK, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    Article  CAS  PubMed  Google Scholar 

  • Fox AH, Nakagawa S, Hirose T, Bond CS (2018) Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci 43:124–135

    Article  CAS  PubMed  Google Scholar 

  • Ghetti A, Pinol-Roma S, Michael WM, Morandi C, Dreyfuss G (1992) hnRNP I, the polypyrimidine tract-binding protein: distinct nuclear localization and association with hnRNAs. Nucleic Acids Res 20:3671–3678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goenka A, Sengupta S, Pandey R, Parihar R, Mohanta GC, Mukerji M, Ganesh S (2016) Human satellite-III non-coding RNAs modulate heat-shock-induced transcriptional repression. J Cell Sci 129:3541–3552

    CAS  PubMed  Google Scholar 

  • Hacisuleyman E, Goff LA, Trapnell C, Williams A, Henao-Mejia J, Sun L, McClanahan P, Hendrickson DG, Sauvageau M, Kelley DR, Morse M, Engreitz J, Lander ES, Guttman M, Lodish HF, Flavell R, Raj A, Rinn JL (2014) Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre. Nat Struct Mol Biol 21:198–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hall LL, Byron M, Carone DM, Whitfield TW, Pouliot GP, Fischer A, Jones P, Lawrence JB (2017) Demethylated HSATII DNA and HSATII RNA foci sequester PRC1 and MeCP2 into cancer-specific nuclear bodies. Cell Rep 18:2943–2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harigaya Y, Tanaka H, Yamanaka S, Tanaka K, Watanabe Y, Tsutsumi C, Chikashige Y, Hiraoka Y, Yamashita A, Yamamoto M (2006) Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature 442:45–50

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa Y, Brockdorff N, Kawano S, Tsutui K, Tsutui K, Nakagawa S (2010) The Matrix protein hnRNP U is required for chromosomal localization of Xist RNA. Dev Cell 19:469–476

    Article  CAS  PubMed  Google Scholar 

  • Hennig S, Kong G, Mannen T, Sadowska A, Kobelke S, Blythe A, Knott GJ, Iyer KS, Ho D, Newcombe EA, Hosoki K, Goshima N, Kawaguchi T, Hatters D, Trinkle-Mulcahy L, Hirose T, Bond CS, Fox AH (2015) Prion-like domains in RNA binding proteins are essential for building subnuclear paraspeckles. J Cell Biol 210:529–539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano T, Konoha G, Toda T, Yanagida M (1989) Essential roles of the RNA polymerase I largest subunit and DNA topoisomerases in the formation of fission yeast nucleolus. J Cell Biol 108:243–253

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Nakagawa S (2016) Clues to long noncoding RNA taxonomy. Biochim Biophys Acta 1859:1–2

    Article  CAS  PubMed  Google Scholar 

  • Hirose T, Yamazaki T, Nakagawa S (2019) Molecular anatomy of the architectural NEAT1 noncoding RNA: the domains, interactors, and biogenesis pathway required to build phase-separated nuclear paraspeckles. Wiley Interdiscip Rev RNA. 10:e1545

    Article  PubMed  Google Scholar 

  • Hogan NC, Traverse KL, Sullivan DE, Pardue ML (1994) The nucleus-limited Hsr-omega-n transcript is a polyadenylated RNA with a regulated intranuclear turnover. J Cell Biol 125:21–30

    Article  CAS  PubMed  Google Scholar 

  • Hoki Y, Kimura N, Kanbayashi M, Amakawa Y, Ohhata T, Sasaki H, Sado T (2009) A proximal conserved repeat in the Xist gene is essential as a genomic element for X-inactivation in mouse. Development 136:139–146

    Article  CAS  PubMed  Google Scholar 

  • Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing domains. BMC Genom 8:39

    Article  CAS  Google Scholar 

  • Ilik IA, Malszycki M, Lubke AK, Schade C, Meierhofer D, Aktas T (2020) SON and SRRM2 are essential for nuclear speckle formation. Elife. https://doi.org/10.7554/eLife.60579

    Article  PubMed  PubMed Central  Google Scholar 

  • Ishiguro T, Sato N, Ueyama M, Fujikake N, Sellier C, Kanegami A, Tokuda E, Zamiri B, Gall-Duncan T, Mirceta M, Furukawa Y, Yokota T, Wada K, Taylor JP, Pearson CE, Charlet-Berguerand N, Mizusawa H, Nagai Y, Ishikawa K (2017) Regulatory role of RNA chaperone TDP 43 for RNA misfolding and repeat associated translation in SCA31. Neuron 94:108-124 e107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa K, Durr A, Klopstock T, Muller S, De Toffol B, Vidailhet M, Vighetto A, Marelli C, Wichmann HE, Illig T, Niimi Y, Sato N, Amino T, Stevanin G, Brice A, Mizusawa H (2011) Pentanucleotide repeats at the spinocerebellar ataxia type 31 (SCA31) locus in Caucasians. Neurology 77:1853–1855

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka A, Hasegawa Y, Ishida K, Yanaka K, Nakagawa S (2014) Formation of nuclear bodies by the lncRNA Gomafu-associating proteins Celf3 and SF1. Genes Cells 19:704–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isobe M, Toya H, Mito M, Chiba T, Asahara H, Hirose T, Nakagawa S (2020) Forced isoform switching of Neat1_1 to Neat1_2 leads to the loss of Neat1_1 and the hyperformation of paraspeckles but does not affect the development and growth of mice. RNA 26:251–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H, Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2003) MALAT-1, a novel noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene 22:8031–8041

    Article  PubMed  CAS  Google Scholar 

  • Jolly C, Usson Y, Morimoto RI (1999) Rapid and reversible relocalization of heat shock factor 1 within seconds to nuclear stress granules. Proc Natl Acad Sci USA 96:6769–6774

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jolly C, Metz A, Govin J, Vigneron M, Turner BM, Khochbin S, Vourc’h C (2004) Stress-induced transcription of satellite III repeats. J Cell Biol 164:25–33

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaiser TE, Intine RV, Dundr M (2008) De novo formation of a subnuclear body. Science 322:1713–1717

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaguchi T, Tanigawa A, Naganuma T, Ohkawa Y, Souquere S, Pierron G, Hirose T (2015) SWI/SNF chromatin-remodeling complexes function in noncoding RNA-dependent assembly of nuclear bodies. Proc Natl Acad Sci USA 112:4304–4309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komatsu T, Yokoi S, Fujii K, Mito M, Kimura Y, Iwasaki S, Nakagawa S (2018) UPA-seq: prediction of functional lncRNAs using differential sensitivity to UV crosslinking. RNA 24:1785–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172:393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushawah G, Hernandez-Huertas L, Abugattas-Nunez Del Prado J, Martinez-Morales JR, DeVore ML, Hassan H, Moreno-Sanchez I, Tomas-Gallardo L, Diaz-Moscoso A, Monges DE, Guelfo JR, Theune WC, Brannan EO, Wang W, Corbin TJ, Moran AM, Sanchez Alvarado A, Malaga-Trillo E, Takacs CM, Bazzini AA, Moreno-Mateos MA (2020) CRISPR-Cas13d induces efficient mRNA knockdown in animal embryos. Dev Cell 54:805–817

    Article  CAS  PubMed  Google Scholar 

  • Lakhotia SC (2011) Forty years of the 93D puff of Drosophila melanogaster. J Biosci 36:399–423

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V, de Thé H (2010) PML nuclear bodies. Cold Spring Harb Perspect Biol 2:a000661

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lancaster AK, Nutter-Upham A, Lindquist S, King OD (2014) PLAAC: a web and command-line application to identify proteins with prion-like amino acid composition. Bioinformatics 30:2501–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landers CC, Rabeler CA, Ferrari EK, D’Alessandro LR, Kang DD, Malisa J, Bashir SM, Carone DM (2021) Ectopic expression of pericentric HSATII RNA results in nuclear RNA accumulation, MeCP2 recruitment, and cell division defects. Chromosoma 130:75–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon EM, Qiu Y, Ghanbari Niaki A, McLaughlin GA, Weidmann CA, Gerbich TM, Smith JA, Crutchley JM, Termini CM, Weeks KM, Myong S, Gladfelter AS (2018) mRNA structure determines specificity of a polyQ-driven phase separation. Science 360:922–927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM, Groff AF, Chang NP, Mallard W, Williams A, Henao-Meija J, Flavell RA, Lee JT, Gerhardinger C, Wagers AJ, Rinn JL (2019) The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun 10:5137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li L, Chang HY (2014) Physiological roles of long noncoding RNAs: insight from knockout mice. Trends Cell Biol 24:594–602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loda A, Heard E (2019) Xist RNA in action: past, present, and future. PLoS Genet 15:e1008333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lyons JG, Siew K, O’Grady RL (1989) Cellular interactions determining the production of collagenase by a rat mammary carcinoma cell line. Int J Cancer 43:119–125

    Article  CAS  PubMed  Google Scholar 

  • Maharana S, Wang J, Papadopoulos DK, Richter D, Pozniakovsky A, Poser I, Bickle M, Rizk S, Guillen-Boixet J, Franzmann TM, Jahnel M, Marrone L, Chang YT, Sterneckert J, Tomancak P, Hyman AA, Alberti S (2018) RNA buffers the phase separation behavior of prion-like RNA binding proteins. Science 360(6391):918–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mai Y, Eisenberg A (2012) Self-assembly of block copolymers. Chem Soc Rev 41:5969–5985

    Article  CAS  PubMed  Google Scholar 

  • Mankodi A, Urbinati CR, Yuan QP, Moxley RT, Sansone V, Krym M, Henderson D, Schalling M, Swanson MS, Thornton CA (2001) Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 10:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Mannen T, Yamashita S, Tomita K, Goshima N, Hirose T (2016) The Sam68 nuclear body is composed of two RNase-sensitive substructures joined by the adaptor HNRNPL. J Cell Biol 214:45–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marahrens Y, Panning B, Dausman J, Strauss W, Jaenisch R (1997) Xist-deficient mice are defective in dosage compensation but not spermatogenesis. Genes Dev 11:156–166

    Article  CAS  PubMed  Google Scholar 

  • Matera AG, Frey MR, Margelot K, Wolin SL (1995) A perinucleolar compartment contains several RNA polymerase III transcripts as well as the polypyrimidine tract-binding protein, hnRNP I. J Cell Biol 129:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, Guttman M (2015) The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature 521:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McSwiggen DT, Mir M, Darzacq X, Tjian R (2019) Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 33:1619–1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mei Y, Deng Z, Vladimirova O, Gulve N, Johnson FB, Drosopoulos WC, Schildkraut CL, Lieberman PM (2021) TERRA G-quadruplex RNA interaction with TRF2 GAR domain is required for telomere integrity. Sci Rep 11:3509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mekhail K, Rivero-Lopez L, Al-Masri A, Brandon C, Khacho M, Lee S (2007) Identification of a common subnuclear localization signal. Mol Biol Cell 18:3966–3977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mello SS, Sinow C, Raj N, Mazur PK, Bieging-Rolett K, Broz DK, Imam JFC, Vogel H, Wood LD, Sage J, Hirose T, Nakagawa S, Rinn J, Attardi LD (2017) Neat1 is a p53-inducible lincRNA essential for transformation suppression. Genes Dev 31:1095–1108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meszaros B, Erdos G, Dosztanyi Z (2018) IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding. Nucleic Acids Res 46:W329–W337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monfort A, Di Minin G, Postlmayr A, Freimann R, Arieti F, Thore S, Wutz A (2015) Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep 12:554–561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naganuma T, Nakagawa S, Tanigawa A, Sasaki YF, Goshima N, Hirose T (2012) Alternative 3′-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. EMBO J 31:4020–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S (2016) Lessons from reverse-genetic studies of lncRNAs. Biochim Biophys Acta 1859:177–183

    Article  CAS  PubMed  Google Scholar 

  • Nakagawa S, Naganuma T, Shioi G, Hirose T (2011) Paraspeckles are subpopulation-specific nuclear bodies that are not essential in mice. J Cell Biol 193:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Ip JY, Shioi G, Tripathi V, Zong X, Hirose T, Prasanth KV (2012) Malat1 is not an essential component of nuclear speckles in mice. RNA 18:1487–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Shimada M, Yanaka K, Mito M, Arai T, Takahashi E, Fujita Y, Fujimori T, Standaert L, Marine JC, Hirose T (2014) The lncRNA Neat1 is required for corpus luteum formation and the establishment of pregnancy in a subpopulation of mice. Development 141:4618–4627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa S, Yamazaki T, Hirose T (2018) Molecular dissection of nuclear paraspeckles: towards understanding the emerging world of the RNP milieu. Open Biol 8:180150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemeth A, Conesa A, Santoyo-Lopez J, Medina I, Montaner D, Peterfia B, Solovei I, Cremer T, Dopazo J, Langst G (2010) Initial genomics of the human nucleolus. PLoS Genet 6:e1000889

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Niimi Y, Takahashi M, Sugawara E, Umeda S, Obayashi M, Sato N, Ishiguro T, Higashi M, Eishi Y, Mizusawa H, Ishikawa K (2013) Abnormal RNA structures (RNA foci) containing a penta-nucleotide repeat (UGGAA)n in the Purkinje cell nucleus is associated with spinocerebellar ataxia type 31 pathogenesis. Neuropathology 33:600–611

    Article  CAS  PubMed  Google Scholar 

  • Ninomiya K, Adachi S, Natsume T, Iwakiri J, Terai G, Asai K, Hirose T (2020) LncRNA-dependent nuclear stress bodies promote intron retention through SR protein phosphorylation. EMBO J 39:e102729

    Article  CAS  PubMed  Google Scholar 

  • Nissan A, Stojadinovic A, Mitrani-Rosenbaum S, Halle D, Grinbaum R, Roistacher M, Bochem A, Dayanc BE, Ritter G, Gomceli I, Bostanci EB, Akoglu M, Chen YT, Old LJ, Gure AO (2012) Colon cancer associated transcript-1: a novel RNA expressed in malignant and pre-malignant human tissues. Int J Cancer 130:1598–1606

    Article  CAS  PubMed  Google Scholar 

  • Nizami Z, Deryusheva S, Gall JG (2010) The Cajal body and histone locus body. Cold Spring Harb Perspect Biol 2:a000653

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ohno S, Kaplan WD, Kinosita R (1959) Formation of the sex chromatin by a single X-chromosome in liver cells of Rattus norvegicus. Exp Cell Res 18:415–418

    Article  CAS  PubMed  Google Scholar 

  • Olivero CE, Martinez-Terroba E, Zimmer J, Liao C, Tesfaye E, Hooshdaran N, Schofield JA, Bendor J, Fang D, Simon MD, Zamudio JR, Dimitrova N (2020) p53 Activates the Long Noncoding RNA Pvt1b to Inhibit Myc and Suppress Tumorigenesis. Mol Cell 77:761-774 e768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandya-Jones A, Markaki Y, Serizay J, Chitiashvili T, Mancia Leon WR, Damianov A, Chronis C, Papp B, Chen CK, McKee R, Wang XJ, Chau A, Sabri S, Leonhardt H, Zheng S, Guttman M, Black DL, Plath K (2020) A protein assembly mediates Xist localization and gene silencing. Nature 587:145–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pederson T (2011a) The nucleolus. Cold Spring Harb Perspect Biol 3:a000638

    Article  PubMed  PubMed Central  Google Scholar 

  • Pederson T (2011b) The nucleus introduced. Cold Spring Harb Perspect Biol 3:a000521

    Article  PubMed  PubMed Central  Google Scholar 

  • Peng A, Weber SC (2019) Evidence for and against liquid-liquid phase separation in the nucleus. Noncoding RNA 5:50

    CAS  Google Scholar 

  • Pintacuda G, Wei G, Roustan C, Kirmizitas BA, Solcan N, Cerase A, Castello A, Mohammed S, Moindrot B, Nesterova TB, Brockdorff N (2017) hnRNPK Recruits PCGF3/5-PRC1 to the Xist RNA B-Repeat to establish polycomb-mediated chromosomal silencing. Mol Cell 68:955-969 e910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pollock C, Huang S (2010) The perinucleolar compartment. Cold Spring Harb Perspect Biol 2:a000679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Prasanth KV, Rajendra TK, Lal AK, Lakhotia SC (2000) Omega speckles—a novel class of nuclear speckles containing hnRNPs associated with noncoding hsr-omega RNA in Drosophila. J Cell Sci 113(Pt 19):3485–3497

    Article  CAS  PubMed  Google Scholar 

  • Querido E, Gallardo F, Beaudoin M, Menard C, Chartrand P (2011) Stochastic and reversible aggregation of mRNA with expanded CUG-triplet repeats. J Cell Sci 124:1703–1714

    Article  CAS  PubMed  Google Scholar 

  • Ridings-Figueroa R, Stewart ER, Nesterova TB, Coker H, Pintacuda G, Godwin J, Wilson R, Haslam A, Lilley F, Ruigrok R, Bageghni SA, Albadrani G, Mansfield W, Roulson JA, Brockdorff N, Ainscough JFX, Coverley D (2017) The nuclear matrix protein CIZ1 facilitates localization of Xist RNA to the inactive X-chromosome territory. Genes Dev 31:876–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rinn JL, Chang HY (2020) Long noncoding RNAs: molecular modalities to organismal functions. Annu Rev Biochem 89:283–308

    Article  CAS  PubMed  Google Scholar 

  • Roden C, Gladfelter AS (2021) RNA contributions to the form and function of biomolecular condensates. Nat Rev Mol Cell Biol 22:183–195

    Article  CAS  PubMed  Google Scholar 

  • Rong Z, Hu J, Corey DR, Mootha VV (2019) Quantitative studies of muscleblind proteins and their interaction with TCF4 RNA foci support involvement in the mechanism of Fuchs’ dystrophy. Invest Ophthalmol vis Sci 60:3980–3991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanders DW, Kedersha N, Lee DSW, Strom AR, Drake V, Riback JA, Bracha D, Eeftens JM, Iwanicki A, Wang A, Wei MT, Whitney G, Lyons SM, Anderson P, Jacobs WM, Ivanov P, Brangwynne CP (2020) Competing protein-RNA interaction networks control multiphase intracellular organization. Cell 181:306-324 e328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sarge KD, Murphy SP, Morimoto RI (1993) Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol Cell Biol 13:1392–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki YT, Ideue T, Sano M, Mituyama T, Hirose T (2009) MENepsilon/beta noncoding RNAs are essential for structural integrity of nuclear paraspeckles. Proc Natl Acad Sci USA 106:2525–2530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sato N, Amino T, Kobayashi K, Asakawa S, Ishiguro T, Tsunemi T, Takahashi M, Matsuura T, Flanigan KM, Iwasaki S, Ishino F, Saito Y, Murayama S, Yoshida M, Hashizume Y, Takahashi Y, Tsuji S, Shimizu N, Toda T, Ishikawa K, Mizusawa H (2009) Spinocerebellar ataxia type 31 is associated with “inserted” penta-nucleotide repeats containing (TGGAA)n. Am J Hum Genet 85:544–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10:228–236

    Article  CAS  PubMed  Google Scholar 

  • Senner CE, Nesterova TB, Norton S, Dewchand H, Godwin J, Mak W, Brockdorff N (2011) Disruption of a conserved region of Xist exon 1 impairs Xist RNA localisation and X-linked gene silencing during random and imprinted X chromosome inactivation. Development 138:1541–1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shadle SC, Zhong JW, Campbell AE, Conerly ML, Jagannathan S, Wong CJ, Morello TD, van der Maarel SM, Tapscott SJ (2017) DUX4-induced dsRNA and MYC mRNA stabilization activate apoptotic pathways in human cell models of facioscapulohumeral dystrophy. PLoS Genet 13:e1006658

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shadle SC, Bennett SR, Wong CJ, Karreman NA, Campbell AE, van der Maarel SM, Bass BL, Tapscott SJ (2019) DUX4-induced bidirectional HSATII satellite repeat transcripts form intranuclear double-stranded RNA foci in human cell models of FSHD. Hum Mol Genet 28:3997–4011

    Article  PubMed  PubMed Central  Google Scholar 

  • Shibata T, Nagano K, Ueyama M, Ninomiya K, Hirose T, Nagai Y, Ishikawa K, Kawai G, Nakatani K (2021) Small molecule targeting r(UGGAA)n disrupts RNA foci and alleviates disease phenotype in Drosophila model. Nat Commun 12:236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shichino Y, Yamashita A, Yamamoto M (2014) Meiotic long non-coding meiRNA accumulates as a dot at its genetic locus facilitated by Mmi1 and plays as a decoy to lure Mmi1. Open Biol 4:140022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382

    Article  PubMed  CAS  Google Scholar 

  • Shtivelman E, Henglein B, Groitl P, Lipp M, Bishop JM (1989) Identification of a human transcription unit affected by the variant chromosomal translocations 2;8 and 8;22 of Burkitt lymphoma. Proc Natl Acad Sci USA 86:3257–3260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Souquere S, Beauclair G, Harper F, Fox A, Pierron G (2010) Highly ordered spatial organization of the structural long noncoding NEAT1 RNAs within paraspeckle nuclear bodies. Mol Biol Cell 21:4020–4027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spector DL, Lamond AI (2011) Nuclear speckles. Cold Spring Harb Perspect Biol 3:a000646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Standaert L, Adriaens C, Radaelli E, Van Keymeulen A, Blanpain C, Hirose T, Nakagawa S, Marine JC (2014) The long noncoding RNA Neat1 is required for mammary gland development and lactation. RNA 20:1844–1849

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sunwoo H, Dinger ME, Wilusz JE, Amaral PP, Mattick JS, Spector DL (2009) MEN epsilon/beta nuclear-retained non-coding RNAs are up-regulated upon muscle differentiation and are essential components of paraspeckles. Genome Res 19:347–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swinnen B, Robberecht W, Van Den Bosch L (2020) RNA toxicity in non-coding repeat expansion disorders. EMBO J 39:e101112

    Article  CAS  PubMed  Google Scholar 

  • Taneja KL, McCurrach M, Schalling M, Housman D, Singer RH (1995) Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 128:995–1002

    Article  CAS  PubMed  Google Scholar 

  • Tang L (2020) Guiding Cas13 for RNA knockdown. Nat Methods 17:461

    Article  PubMed  Google Scholar 

  • Theodoridis PR, Bokros M, Marijan D, Balukoff NC, Wang D, Kirk CC, Budine TD, Goldsmith HD, Wang M, Audas TE, Lee S (2021) Local translation in nuclear condensate amyloid bodies. Proc Natl Acad Sci U S A 118:e2014457118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thoraval D, Asakawa J, Wimmer K, Kuick R, Lamb B, Richardson B, Ambros P, Glover T, Hanash S (1996) Demethylation of repetitive DNA sequences in neuroblastoma. Genes Chromosom Cancer 17:234–244

    Article  CAS  PubMed  Google Scholar 

  • Ting DT, Lipson D, Paul S, Brannigan BW, Akhavanfard S, Coffman EJ, Contino G, Deshpande V, Iafrate AJ, Letovsky S, Rivera MN, Bardeesy N, Maheswaran S, Haber DA (2011) Aberrant overexpression of satellite repeats in pancreatic and other epithelial cancers. Science 331:593–596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tomita S, Abdalla MOA, Fujiwara S, Matsumori H, Maehara K, Ohkawa Y, Iwase H, Saitoh N, Nakao M (2015) A cluster of noncoding RNAs activates the ESR1 locus during breast cancer adaptation. Nat Commun 6:6966

    Article  CAS  PubMed  Google Scholar 

  • Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A, Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell 39:925–938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tseng YY, Moriarity BS, Gong W, Akiyama R, Tiwari A, Kawakami H, Ronning P, Reuland B, Guenther K, Beadnell TC, Essig J, Otto GM, O’Sullivan MG, Largaespada DA, Schwertfeger KL, Marahrens Y, Kawakami Y, Bagchi A (2014) PVT1 dependence in cancer with MYC copy-number increase. Nature 512:82–86

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycowski KT, Shu MD, Borah S, Shi M, Steitz JA (2012) Conservation of a triple-helix-forming RNA stability element in noncoding and genomic RNAs of diverse viruses. Cell Rep 2:26–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycowski KT, Shu MD, Steitz JA (2016) Myriad triple-helix-forming structures in the transposable element RNAs of plants and fungi. Cell Rep 15:1266–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulitsky I (2016) Evolution to the rescue: using comparative genomics to understand long non-coding RNAs. Nat Rev Genet 17:601–614

    Article  CAS  PubMed  Google Scholar 

  • Valgardsdottir R, Chiodi I, Giordano M, Rossi A, Bazzini S, Ghigna C, Riva S, Biamonti G (2008) Transcription of Satellite III non-coding RNAs is a general stress response in human cells. Nucleic Acids Res 36:423–434

    Article  CAS  PubMed  Google Scholar 

  • van Koningsbruggen S, Gierlinski M, Schofield P, Martin D, Barton GJ, Ariyurek Y, den Dunnen JT, Lamond AI (2010) High-resolution whole-genome sequencing reveals that specific chromatin domains from most human chromosomes associate with nucleoli. Mol Biol Cell 21:3735–3748

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang C, Politz JC, Pederson T, Huang S (2003) RNA polymerase III transcripts and the PTB protein are essential for the integrity of the perinucleolar compartment. Mol Biol Cell 14:2425–2435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Choi JM, Holehouse AS, Lee HO, Zhang X, Jahnel M, Maharana S, Lemaitre R, Pozniakovsky A, Drechsel D, Poser I, Pappu RV, Alberti S, Hyman AA (2018) A molecular grammar governing the driving forces for phase separation of prion-like RNA binding proteins. Cell 174:688-699 e616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe Y, Yamamoto M (1994) S. pombe mei2+ encodes an RNA-binding protein essential for premeiotic DNA synthesis and meiosis I, which cooperates with a novel RNA species meiRNA. Cell 78:487–498

    Article  CAS  PubMed  Google Scholar 

  • West JA, Mito M, Kurosaka S, Takumi T, Tanegashima C, Chujo T, Yanaka K, Kingston RE, Hirose T, Bond C, Fox A, Nakagawa S (2016) Structural, super-resolution microscopy analysis of paraspeckle nuclear body organization. J Cell Biol 214:817–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilusz JE, JnBaptiste CK, Lu LY, Kuhn CD, Joshua-Tor L, Sharp PA (2012) A triple helix stabilizes the 3′ ends of long noncoding RNAs that lack poly(A) tails. Genes Dev 26:2392–2407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu H, Yin QF, Luo Z, Yao RW, Zheng CC, Zhang J, Xiang JF, Yang L, Chen LL (2016) Unusual processing generates SPA LncRNAs that sequester multiple rna binding proteins. Mol Cell 64:534–548

    Article  CAS  PubMed  Google Scholar 

  • Xiang JF, Yin QF, Chen T, Zhang Y, Zhang XO, Wu Z, Zhang S, Wang HB, Ge J, Lu X, Yang L, Chen LL (2014) Human colorectal cancer-specific CCAT1-L lncRNA regulates long-range chromatin interactions at the MYC locus. Cell Res 24:513–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing Y, Johnson CV, Dobner PR, Lawrence JB (1993) Higher level organization of individual gene transcription and RNA splicing. Science 259:1326–1330

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Yamazaki T, Hirose T (2021) Triblock copolymer micelle model of spherical paraspeckles. bioRxiv. https://doi.org/10.1101/2020.1111.1101.364190

    Article  Google Scholar 

  • Yamazaki T, Fujikawa C, Kubota A, Takahashi A, Hirose T (2018a) CRISPRa-mediated NEAT1 lncRNA upregulation induces formation of intact paraspeckles. Biochem Biophys Res Commun 504:218–224

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Souquere S, Chujo T, Kobelke S, Chong YS, Fox AH, Bond CS, Nakagawa S, Pierron G, Hirose T (2018b) Functional domains of NEAT1 architectural lncRNA induce paraspeckle assembly through Phase separation. Mol Cell 70:1038-1053 e1037

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki T, Yamamoto T, Yoshino H, Souquere S, Nakagawa S, Pierron G, Hirose T (2021) Paraspeckles are constructed as block copolymer micelles. EMBO J. https://doi.org/10.15252/embj.2020107270

    Article  PubMed  Google Scholar 

  • Yang L, Duff MO, Graveley BR, Carmichael GG, Chen LL (2011) Genomewide characterization of non-polyadenylated RNAs. Genome Biol 12:R16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang L, Kirby JE, Sunwoo H, Lee JT (2016) Female mice lacking Xist RNA show partial dosage compensation and survive to term. Genes Dev 30:1747–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao RW, Xu G, Wang Y, Shan L, Luan PF, Wang Y, Wu M, Yang LZ, Xing YH, Yang L, Chen LL (2019) Nascent pre-rRNA sorting via phase separation drives the assembly of dense fibrillar Components in the human nucleolus. Mol Cell 76:767-783 e711

    Article  CAS  PubMed  Google Scholar 

  • Yap K, Mukhina S, Zhang G, Tan JSC, Ong HS, Makeyev EV (2018) A short tandem repeat-enriched RNA Assembles a nuclear compartment to control alternative splicing and promote cell survival. Mol Cell 72:525–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL (2012) Long noncoding RNAs with snoRNA ends. Mol Cell 48:219–230

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Arun G, Mao YS, Lazar Z, Hung G, Bhattacharjee G, Xiao X, Booth CJ, Wu J, Zhang C, Spector DL (2012) The lncRNA Malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep 2:111–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers 17H03604, 16H06279, and 16H06276, and a Naito Memorial Foundation Grant granted to S.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinichi Nakagawa.

Ethics declarations

Conflict of interest

There is no conflict of interests related to this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakagawa, S., Yamazaki, T., Mannen, T. et al. ArcRNAs and the formation of nuclear bodies. Mamm Genome 33, 382–401 (2022). https://doi.org/10.1007/s00335-021-09881-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-021-09881-5

Navigation