Abstract
The gut microbiota can affect host health, including humans. Mouse models have been used extensively to study the relationships between the host and the gut microbiota. With the development of cost-effective high-throughput DNA sequencing, several methods have been used to identify members of the gut microbiota of laboratory mice. In recent years, the amount of research and knowledge about the mouse gut microbiota has exploded, leading to significant breakthroughs in understanding of the taxonomic composition of and variation in this community. In addition, the rapidly increasing volume of data has allowed the development of public resources for exploring the mouse gut microbiota. In this review, we describe the concepts and pros and cons of basic methodologies that can be used to determine the gut bacterial profile in laboratory mice. We also present the key bacterial components of the mouse gut microbiota from the phylum to the species level and then compare them with those identified in other references. Additionally, we discuss variations in the mouse gut microbiota and their association with experiments using mice. Finally, we summarize the properties and functions of currently available public resources for exploring the mouse gut microbiota.
Similar content being viewed by others
References
Backhed F (2009) Changes in intestinal microflora in obesity: cause or consequence? J Pediatr Gastroenterol Nutr 48(Suppl 2):S56-57. https://doi.org/10.1097/MPG.0b013e3181a11851
Basson AR et al (2020) Artificial microbiome heterogeneity spurs six practical action themes and examples to increase study power-driven reproducibility. Sci Rep 10:5039. https://doi.org/10.1038/s41598-020-60900-y
Belzer C, de Vos WM (2012) Microbes inside–from diversity to function: the case of Akkermansia. ISME J 6:1449–1458. https://doi.org/10.1038/ismej.2012.6
Boase S et al (2013) The microbiome of chronic rhinosinusitis: culture, molecular diagnostics and biofilm detection. BMC Infect Dis 13:210. https://doi.org/10.1186/1471-2334-13-210
Brown TA, Tashiro H, Kasahara DI, Cho Y, Shore SA (2020) Early life microbiome perturbation alters pulmonary responses to ozone in male mice. Physiol Rep 8:e14290. https://doi.org/10.14814/phy2.14290
Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643. https://doi.org/10.1038/ismej.2017.119
Campbell JH et al (2012) Host genetic and environmental effects on mouse intestinal microbiota. ISME J 6:2033–2044. https://doi.org/10.1038/ismej.2012.54
Caruso V, Song X, Asquith M, Karstens L (2019) Performance of Microbiome Sequence Inference Methods in Environments with Varying Biomass. mSystems. https://doi.org/10.1128/mSystems.00163-18
Casero D et al (2017) Space-type radiation induces multimodal responses in the mouse gut microbiome and metabolome. Microbiome 5:105. https://doi.org/10.1186/s40168-017-0325-z
Chalita M, Ha SM, Kim YO, Oh HS, Yoon SH, Chun J (2020) Improved Metagenomic Taxonomic Profiling Using a Curated Core Gene-Based Bacterial Database Reveals Unrecognized Species in the Genus Streptococcus. Pathogens. https://doi.org/10.3390/pathogens9030204
Chun J et al (2018) Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol 68:461–466. https://doi.org/10.1099/ijsem.0.002516
Cole JR et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633-642. https://doi.org/10.1093/nar/gkt1244
D’Amore R et al (2016) A comprehensive benchmarking study of protocols and sequencing platforms for 16S rRNA community profiling. BMC genomics. https://doi.org/10.1186/s12864-015-2194-9
Deloris Alexander A, Orcutt RP, Henry JC, Baker J Jr, Bissahoyo AC, Threadgill DW (2006) Quantitative PCR assays for mouse enteric flora reveal strain-dependent differences in composition that are influenced by the microenvironment. Mamm Genome 17:1093–1104. https://doi.org/10.1007/s00335-006-0063-1
Depommier C, Van Hul M, Everard A, Delzenne NM, De Vos WM, Cani PD (2020) Pasteurized Akkermansia muciniphila increases whole-body energy expenditure and fecal energy excretion in diet-induced obese mice. Gut Microbes 11:1231–1245. https://doi.org/10.1080/19490976.2020.1737307
Derrien M, Vaughan EE, Plugge CM, de Vos WM (2004) Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 54:1469–1476. https://doi.org/10.1099/ijs.0.02873-0
Dingemanse C et al (2015) Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 36:1388–1396. https://doi.org/10.1093/carcin/bgv120
Douglas GM et al (2020) PICRUSt2 for prediction of metagenome functions. Nat Biotechnol 38:685–688. https://doi.org/10.1038/s41587-020-0548-6
Eberl C et al (2019) Reproducible Colonization of Germ-Free Mice With the Oligo-Mouse-Microbiota in Different Animal Facilities. Front Microbiol 10:2999. https://doi.org/10.3389/fmicb.2019.02999
Elinav E et al (2011) NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145:745–757. https://doi.org/10.1016/j.cell.2011.04.022
Ericsson AC et al (2015) Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PloS one 10:e0116704
Fricker AM, Podlesny D, Fricke WF (2019) What is new and relevant for sequencing-based microbiome research? A mini-review. J Adv Res 19:105–112
Garud NR, Good BH, Hallatschek O, Pollard KS (2019) Evolutionary dynamics of bacteria in the gut microbiome within and across hosts. PLoS Biol 17:e3000102
Gordon JH, Dubos R (1970) The anaerobic bacterial flora of the mouse cecum. J Exp Med 132:251–260. https://doi.org/10.1084/jem.132.2.251
Gorecki AM et al (2019) Altered Gut Microbiome in Parkinson’s Disease and the Influence of Lipopolysaccharide in a Human alpha-Synuclein Over-Expressing Mouse Model. Front Neurosci 13:839. https://doi.org/10.3389/fnins.2019.00839
Greenblum S, Carr R, Borenstein E (2015) Extensive strain-level copy-number variation across human gut microbiome species. Cell 160:583–594. https://doi.org/10.1016/j.cell.2014.12.038
Gu S et al (2013) Bacterial community mapping of the mouse gastrointestinal tract. PLoS ONE 8:e74957. https://doi.org/10.1371/journal.pone.0074957
Hedblom GA, Reiland HA, Sylte MJ, Johnson TJ, Baumler DJ (2018) Segmented Filamentous Bacteria - Metabolism Meets Immunity. Front Microbiol 9:1991. https://doi.org/10.3389/fmicb.2018.01991
Heinritz SN, Mosenthin R, Weiss E (2013) Use of pigs as a potential model for research into dietary modulation of the human gut microbiota. Nutr Res Rev 26:191–209
Hildebrand F et al (2013) Inflammation-associated enterotypes, host genotype, cage and inter-individual effects drive gut microbiota variation in common laboratory mice. Genome Biol 14:R4. https://doi.org/10.1186/gb-2013-14-1-r4
Ivanov II et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4:337–349. https://doi.org/10.1016/j.chom.2008.09.009
Ivanov II et al (2009) Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell 139:485–498. https://doi.org/10.1016/j.cell.2009.09.033
Jin D, Wu S, Zhang YG, Lu R, Xia Y, Dong H, Sun J (2015) Lack of Vitamin D Receptor Causes Dysbiosis and Changes the Functions of the Murine Intestinal Microbiome. Clin Ther 37(996–1009):e1007. https://doi.org/10.1016/j.clinthera.2015.04.004
Johnson JS et al (2019) Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10:5029. https://doi.org/10.1038/s41467-019-13036-1
Jovel J et al (2016) Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in microbiology 7:459
Koeller K et al (2018) Microbiome and Culture Based Analysis of Chronic Rhinosinusitis Compared to Healthy Sinus Mucosa. Front Microbiol 9:643. https://doi.org/10.3389/fmicb.2018.00643
Krych L, Hansen CH, Hansen AK, van den Berg FW, Nielsen DS (2013) Quantitatively different, yet qualitatively alike: a meta-analysis of the mouse core gut microbiome with a view towards the human gut microbiome. PLoS One 8:e62578. https://doi.org/10.1371/journal.pone.0062578
Lagier JC et al (2018) Culturing the human microbiota and culturomics. Nat Rev Microbiol 16:540–550. https://doi.org/10.1038/s41579-018-0041-0
Lagkouvardos I, Joseph D, Kapfhammer M, Giritli S, Horn M, Haller D, Clavel T (2016) IMNGS: A comprehensive open resource of processed 16S rRNA microbial profiles for ecology and diversity studies. Sci Rep 6:33721. https://doi.org/10.1038/srep33721
Lagkouvardos I et al (2016) The Mouse Intestinal Bacterial Collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol 1:16131. https://doi.org/10.1038/nmicrobiol.2016.131
Lagkouvardos I et al (2019) Sequence and cultivation study of Muribaculaceae reveals novel species, host preference, and functional potential of this yet undescribed family. Microbiome 7:28. https://doi.org/10.1186/s40168-019-0637-2
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108(Suppl 1):4615–4622. https://doi.org/10.1073/pnas.1000082107
Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023. https://doi.org/10.1038/4441022a
Liu C et al (2020) The Mouse Gut Microbial Biobank expands the coverage of cultured bacteria. Nat Commun 11:79. https://doi.org/10.1038/s41467-019-13836-5
McDonald D et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139
McIntosh CM, Chen L, Shaiber A, Eren AM, Alegre ML (2018) Gut microbes contribute to variation in solid organ transplant outcomes in mice. Microbiome 6:96. https://doi.org/10.1186/s40168-018-0474-8
McLain JE, Cytryn E, Durso LM, Young S (2016) Culture-based Methods for Detection of Antibiotic Resistance in Agroecosystems: Advantages Challenges, and Gaps in Knowledge. J Environ Qual 45:432–440. https://doi.org/10.2134/jeq2015.06.0317
Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46
Meyer F et al (2008) The metagenomics RAST server - a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9:386. https://doi.org/10.1186/1471-2105-9-386
Misic AM et al (2018) Culture-independent Profiling of the Fecal Microbiome to Identify Microbial Species Associated with a Diarrheal Outbreak in Immunocompromised Mice. Comp Med 68:261–268. https://doi.org/10.30802/AALAS-CM-17-000084
Mitchell AL et al (2020) (2020) MGnify: the microbiome analysis resource in. Nucleic Acids Res 48:D570–D578. https://doi.org/10.1093/nar/gkz1035
Nagpal R et al (2018) Comparative Microbiome Signatures and Short-Chain Fatty Acids in Mouse. Rat, Non-human Primate, and Human Feces Front Microbiol 9:2897. https://doi.org/10.3389/fmicb.2018.02897
Naseribafrouei A, Hestad K, Avershina E, Sekelja M, Linløkken A, Wilson R, Rudi K (2014) Correlation between the human fecal microbiota and depression. Neurogastroenterol Motil 26:1155–1162
Nguyen TLA, Vieira-Silva S, Liston A, Raes J (2015) How informative is the mouse for human gut microbiota research? Dis Model Mech 8:1–16
Ni J, Wu GD, Albenberg L, Tomov VT (2017) Gut microbiota and IBD: causation or correlation? Nat Rev Gastroenterol Hepatol 14:573–584. https://doi.org/10.1038/nrgastro.2017.88
Nozu R, Ueno M, Hayashimoto N (2016) Composition of fecal microbiota of laboratory mice derived from Japanese commercial breeders using 16S rRNA gene clone libraries. J Vet Med Sci 78:1045–1050. https://doi.org/10.1292/jvms.15-0454
Oliveira FS et al (2018) MicrobiomeDB: a systems biology platform for integrating, mining and analyzing microbiome experiments. Nucleic Acids Res 46:D684–D691. https://doi.org/10.1093/nar/gkx1027
Oren A, Garrity GM, Parker CT, Chuvochina M, Trujillo ME (2020) Lists of names of prokaryotic Candidatus taxa. Int J Syst Evol Microbiol 70:3956–4042. https://doi.org/10.1099/ijsem.0.003789
Pfeiffer N, Desmarchelier C, Blaut M, Daniel H, Haller D, Clavel T (2012) Acetatifactor muris gen. nov., sp. nov., a novel bacterium isolated from the intestine of an obese mouse. Arch Microbiol 194:901–907. https://doi.org/10.1007/s00203-012-0822-1
Quast C et al (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590-596. https://doi.org/10.1093/nar/gks1219
Ranjan R, Rani A, Metwally A, McGee HS, Perkins DL (2016) Analysis of the microbiome: Advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem Biophys Res Commun 469:967–977. https://doi.org/10.1016/j.bbrc.2015.12.083
Robertson BR, O’Rourke JL, Neilan BA, Vandamme P, On SLW, Fox JG, Lee A (2005) Mucispirillum schaedleri gen. nov., sp. nov., a spiral-shaped bacterium colonizing the mucus layer of the gastrointestinal tract of laboratory rodents. Int J Syst Evol Microbiol 55:1199–1204. https://doi.org/10.1099/ijs.0.63472-0
Robertson SJ et al (2019) Comparison of Co-housing and Littermate Methods for Microbiota Standardization in Mouse. Models Cell Rep 27(1910–1919):e1912. https://doi.org/10.1016/j.celrep.2019.04.023
Rosshart SP et al (2017) Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171(1015–1028):e1013. https://doi.org/10.1016/j.cell.2017.09.016
Rosshart SP et al (2019) Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. https://doi.org/10.1126/science.aaw4361
Scheperjans F et al (2015) Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 30:350–358. https://doi.org/10.1002/mds.26069
Shi W et al (2019) gcMeta: a Global Catalogue of Metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res 47:D637–D648. https://doi.org/10.1093/nar/gky1008
Sivan A et al (2015) Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science 350:1084–1089. https://doi.org/10.1126/science.aac4255
Snel J, Heinen PP, Blok HJ, Carman RJ, Duncan AJ, Allen PC, Collins MD (1995) Comparison of 16S rRNA sequences of segmented filamentous bacteria isolated from mice, rats, and chickens and proposal of “Candidatus Arthromitus.” Int J Syst Bacteriol 45:780–782. https://doi.org/10.1099/00207713-45-4-780
Sommer F, Bäckhed F (2013) The gut microbiota—masters of host development and physiology. Nat Rev Microbiol 11:227–238
Stagaman K, Sharpton TJ, Guillemin K (2020) Zebrafish microbiome studies make waves. Lab Anim (NY) 49:201–207. https://doi.org/10.1038/s41684-020-0573-6
Stecher B et al (2010) Like will to like: abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog 6:e1000711. https://doi.org/10.1371/journal.ppat.1000711
Sunagawa S et al (2013) Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods 10:1196–1199. https://doi.org/10.1038/nmeth.2693
Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67:1992–2000
Tam A et al (2020) Effects of sex and chronic cigarette smoke exposure on the mouse cecal microbiome. PLoS ONE 15:e0230932. https://doi.org/10.1371/journal.pone.0230932
Tessler M et al (2017) Large-scale differences in microbial biodiversity discovery between 16S amplicon and shotgun sequencing. Sci Rep 7:1–14
Thompson CL, Vier R, Mikaelyan A, Wienemann T, Brune A (2012) “Candidatus Arthromitus” revised: segmented filamentous bacteria in arthropod guts are members of Lachnospiraceae. Environ Microbiol 14:1454–1465. https://doi.org/10.1111/j.1462-2920.2012.02731.x
Thompson CL, Mikaelyan A, Brune A (2013) Immune-modulating gut symbionts are not “Candidatus Arthromitus.” Mucosal Immunol 6:200–201. https://doi.org/10.1038/mi.2012.91
Tremaroli V, Bäckhed F (2012) Functional interactions between the gut microbiota and host metabolism. Nature 489:242–249
Truong DT et al (2015) MetaPhlAn2 for enhanced metagenomic taxonomic profiling. Nat Methods 12:902–903. https://doi.org/10.1038/nmeth.3589
Velazquez EM et al (2019) Endogenous Enterobacteriaceae underlie variation in susceptibility to Salmonella infection. Nat Microbiol 4:1057–1064. https://doi.org/10.1038/s41564-019-0407-8
Villarino NF et al (2016) Composition of the gut microbiota modulates the severity of malaria. Proc Natl Acad Sci U S A 113:2235–2240. https://doi.org/10.1073/pnas.1504887113
Walter J (2008) Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74:4985–4996. https://doi.org/10.1128/AEM.00753-08
Wang J, Linnenbrink M, Kunzel S, Fernandes R, Nadeau MJ, Rosenstiel P, Baines JF (2014) Dietary history contributes to enterotype-like clustering and functional metagenomic content in the intestinal microbiome of wild mice. Proc Natl Acad Sci U S A 111:E2703-2710. https://doi.org/10.1073/pnas.1402342111
Wang QP, Browman D, Herzog H, Neely GG (2018) Non-nutritive sweeteners possess a bacteriostatic effect and alter gut microbiota in mice. PLoS ONE 13:e0199080. https://doi.org/10.1371/journal.pone.0199080
Wang J, Lang T, Shen J, Dai J, Tian L, Wang X (2019) Core Gut Bacteria Analysis of Healthy Mice. Front Microbiol 10:887. https://doi.org/10.3389/fmicb.2019.00887
Wang Y et al (2019) Induction of intestinal Th17 cells by flagellins from segmented filamentous bacteria. Front Immunol 10:2750
Witjes VM, Boleij A, Halffman W (2020) Reducing versus Embracing Variation as Strategies for Reproducibility: The Microbiome of Laboratory Mice. Animals (Basel). https://doi.org/10.3390/ani10122415
Wu HJ et al (2010) Gut-residing segmented filamentous bacteria drive autoimmune arthritis via T helper 17 cells. Immunity 32:815–827. https://doi.org/10.1016/j.immuni.2010.06.001
Xiao L et al (2015) A catalog of the mouse gut metagenome. Nat Biotechnol 33:1103–1108. https://doi.org/10.1038/nbt.3353
Yang J, Park J, Park S, Baek I, Chun J (2019) Introducing Murine Microbiome Database (MMDB): A Curated Database with Taxonomic Profiling of the Healthy Mouse Gastrointestinal Microbiome. Microorganisms. https://doi.org/10.3390/microorganisms7110480
Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J (2017) Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. https://doi.org/10.1099/ijsem.0.001755
Yu H, Guo Z, Shen S, Shan W (2016) Effects of taurine on gut microbiota and metabolism in mice. Amino Acids 48:1601–1617. https://doi.org/10.1007/s00726-016-2219-y
Zhang Z, Wang X, Han S, Liu C, Liu F (2018) Effect of two seaweed polysaccharides on intestinal microbiota in mice evaluated by illumina PE250 sequencing. Int J Biol Macromol 112:796–802. https://doi.org/10.1016/j.ijbiomac.2018.01.192
Zhuang Z-Q et al (2018) Gut microbiota is altered in patients with Alzheimer’s disease. J Alzheimer’s Dis 63:1337–1346
Zmora N et al (2018) Personalized Gut Mucosal Colonization Resistance to Empiric Probiotics Is Associated with Unique Host and Microbiome Features. Cell 174(1388–1405):e1321. https://doi.org/10.1016/j.cell.2018.08.041
Funding
This work was supported by the Korea Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET) funded by the Ministry of Agriculture, Food and Rural Affairs (MAFRA) of Korea, Grant Number 918013–04-4-SB010. This work was also supported by the National Research Foundation of Korea (NRF-2014M3C9A3063541).
Author information
Authors and Affiliations
Contributions
All authors contributed to the conception of the article. The literature search and data analysis were performed by JY. The first draft of the manuscript was written by JY, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors have no conflicts of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Yang, J., Chun, J. Taxonomic composition and variation in the gut microbiota of laboratory mice. Mamm Genome 32, 297–310 (2021). https://doi.org/10.1007/s00335-021-09871-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-021-09871-7