Skip to main content
Log in

Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genetic background is known to play a role in the ability to derive pluripotent, embryonic stem cells (ESC), a trait referred to as permissiveness. Previously we demonstrated that induced pluripotent stem cells (iPSC) can be readily derived from non-permissive mouse strains by addition of serum-based media supplemented with GSK3B and MEK inhibitors, termed 2iS media, 3 days into reprogramming. Here, we describe the derivation of second type of iPSC colony from non-permissive mouse strains that can be stably maintained independently of 2iS media. The resulting cells display transcriptional heterogeneity similar to that observed in ESC from permissive genetic backgrounds derived in conventional serum containing media supplemented with leukemia inhibitor factor. However, unlike previous studies that report exclusive subpopulations, we observe both exclusive and simultaneous expression of naive and primed cell surface markers. Herein, we explore shifts in pluripotency in the presence of 2iS and characterize heterogenous subpopulations to determine their pluripotent state and role in heterogenous iPSCs derived from the non-permissive NOD/ShiLtJ strain. We conclude that heterogeneity is a naturally occurring, necessary quality of stem cells that allows for the maintenance of pluripotency. This study further demonstrates the efficacy of the 2iS reprogramming technique. It is also the first study to derive stable ESC-like stem cells from the non-permissive NOD/ShiLtJ and WSB/EiJ strains, enabling easier and broader research possibilities into pluripotency for these and similar non-permissive mouse strains and species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

source population. There is less variance between PECAM1+ cells and dual expressing cells than between either and CD40+ cells. b There are fewer differentially expressed genes between PECAM1+ cells and the ESC state than PECAM1+ cells and the EpiSC state. The same is true for flow-sorted dual expressing cells. However, CD40+ cells are equally dissimilar to both the ESC state and the EpiSC state as judged by a roughly equal number of differentially expressed genes in each comparison. c14 Culture of PECAM1+ cells flow sorted cells separately yields a re-emergence of all three subpopulations. c12 Single channel images of each marker. c3 Merged image of both markers. c13 Scale bar 200 µm. c4 Enlarged region of c3 panel, scale bar 30 µm. d14 Culture of CD40+ flow sorted cells separately yields a re-emergence of all three subpopulations. These images are representative of the population 3 to 4 days after separate growth. The cells have not been passaged

Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abranches E, Bekman E, Henrique D (2013) Generation and characterization of a novel mouse embryonic stem cell line with a dynamic reporter of Nanog expression. PLoS ONE 8:e59928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abranches E, Guedes AM, Moravec M, Maamar H, Svoboda P, Raj A, Henrique D (2014) Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development (Camb Engl) 141:2770–2779

    CAS  Google Scholar 

  • Bao S, Tang F, Li X, Hayashi K, Gillich A, Lao K, Surani MA (2009) Epigenetic reversion of post-implantation epiblast to pluripotent embryonic stem cells. Nature 461:1292–1295

    CAS  PubMed  Google Scholar 

  • Bauer JH, Liu KD, You Y, Lai SY, Goldsmith MA (1998) Heteromerization of the gamma chain with the interleukin-9 receptor alpha subunit leads to STAT activation and prevention of apoptosis. J Biol Chem 273:9255–9260

    CAS  PubMed  Google Scholar 

  • Besser D (2004) Expression of nodal, lefty-a, and lefty-B in undifferentiated human embryonic stem cells requires activation of Smad2/3. J Biol Chem 279:45076–45084

    CAS  PubMed  Google Scholar 

  • Boroviak T, Loos R, Bertone P, Smith A, Nichols J (2014) The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat Cell Biol 16:516–528

    CAS  PubMed  PubMed Central  Google Scholar 

  • Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS, Zucker JP, Guenther MG, Kumar RM, Murray HL, Jenner RG et al (2005) Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:947–956

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, de Sousa C, Lopes SM, Howlett SK, Clarkson A, Ahrlund-Richter L, Pedersen RA et al (2007) Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:191–195

    CAS  PubMed  Google Scholar 

  • Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    CAS  PubMed  Google Scholar 

  • Cao Y, Szabolcs A, Dutta SK, Yaqoob U, Jagavelu K, Wang L, Leof EB, Urrutia RA, Shah VH, Mukhopadhyay D (2010) Neuropilin-1 mediates divergent R-Smad signaling and the myofibroblast phenotype. J Biol Chem 285:31840–31848

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castelo-Branco G, Amaral PP, Engstrom PG, Robson SC, Marques SC, Bertone P, Kouzarides T (2013) The non-coding snRNA 7SK controls transcriptional termination, poising, and bidirectionality in embryonic stem cells. Genome Biol 14:R98

    PubMed  PubMed Central  Google Scholar 

  • Cerezo A, Guadamillas MC, Goetz JG, Sanchez-Perales S, Klein E, Assoian RK, del Pozo MA (2009) The absence of caveolin-1 increases proliferation and anchorage- independent growth by a Rac-dependent, Erk-independent mechanism. Mol Cell Biol 29:5046–5059

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B, Robertson M, Vrana J, Jones K, Grotewold L, Smith A (2007) Nanog safeguards pluripotency and mediates germline development. Nature 450:1230–1234

    CAS  PubMed  Google Scholar 

  • Chazaud C, Yamanaka Y, Pawson T, Rossant J (2006) Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell 10:615–624

    CAS  PubMed  Google Scholar 

  • Chen N, Wang X (2014) Role of IL-9 and STATs in hematological malignancies (Review). Oncol Lett 7:602–610

    CAS  PubMed  Google Scholar 

  • Chenoweth JG, Tesar PJ (2010) Isolation and maintenance of mouse epiblast stem cells. Methods Mol Biol (Clifton NJ) 636:25–44

    Google Scholar 

  • Cinelli P, Casanova EA, Uhlig S, Lochmatter P, Matsuda T, Yokota T, Rulicke T, Ledermann B, Burki K (2008) Expression profiling in transgenic FVB/N embryonic stem cells overexpressing STAT3. BMC Dev Biol 8:57

    PubMed  PubMed Central  Google Scholar 

  • Collins CA, Watt FM (2008) Dynamic regulation of retinoic acid-binding proteins in developing, adult and neoplastic skin reveals roles for beta-catenin and Notch signalling. Dev Biol 324:55–67

    CAS  PubMed  Google Scholar 

  • Czechanski A, Byers C, Greenstein I, Schrode N, Donahue LR, Hadjantonakis AK, Reinholdt LG (2014) Derivation and characterization of mouse embryonic stem cells from permissive and nonpermissive strains. Nat Protoc 9:559–574

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312

    CAS  PubMed  Google Scholar 

  • Galvin-Burgess KE, Travis ED, Pierson KE, Vivian JL (2013) TGF-beta-superfamily signaling regulates embryonic stem cell heterogeneity: self-renewal as a dynamic and regulated equilibrium. Stem Cells (Dayt Ohio) 31:48–58

    CAS  Google Scholar 

  • Garbutt TA, Konneker TI, Konganti K, Hillhouse AE, Swift-Haire F, Jones A, Phelps D, Aylor DL, Threadgill DW (2018) Permissiveness to form pluripotent stem cells may be an evolutionarily derived characteristic in Mus musculus. Sci Rep 8:14706

    PubMed  PubMed Central  Google Scholar 

  • Geetha N, Mihaly J, Stockenhuber A, Blasi F, Uhrin P, Binder BR, Freissmuth M, Breuss JM (2011) Signal integration and coincidence detection in the mitogen-activated protein kinase/extracellular signal-regulated kinase (ERK) cascade: concomitant activation of receptor tyrosine kinases and of LRP-1 leads to sustained ERK phosphorylation via down-regulation of dual specificity phosphatases (DUSP1 and -6). J Biol Chem 286:25663–25674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Golipour A, David L, Liu Y, Jayakumaran G, Hirsch CL, Trcka D, Wrana JL (2012) A late transition in somatic cell reprogramming requires regulators distinct from the pluripotency network. Cell Stem Cell 11:769–782

    CAS  PubMed  Google Scholar 

  • Grabole N, Tischler J, Hackett JA, Kim S, Tang F, Leitch HG, Magnusdottir E, Surani MA (2013) Prdm14 promotes germline fate and naive pluripotency by repressing FGF signalling and DNA methylation. EMBO Rep 14:629–637

    CAS  PubMed  PubMed Central  Google Scholar 

  • Graf T, Stadtfeld M (2008) Heterogeneity of embryonic and adult stem cells. Cell Stem Cell 3:480–483

    CAS  PubMed  Google Scholar 

  • Guo G, Yang J, Nichols J, Hall JS, Eyres I, Mansfield W, Smith A (2009) Klf4 reverts developmentally programmed restriction of ground state pluripotency. Dev (Camb Engl) 136:1063–1069

    CAS  Google Scholar 

  • Hackett JA, Surani MA (2014) Regulatory principles of pluripotency: from the ground state up. Cell Stem Cell 15:416–430

    CAS  PubMed  Google Scholar 

  • Hackett JA, Kobayashi T, Dietmann S, Surani MA (2017) Activation of lineage regulators and transposable elements across a pluripotent spectrum. Stem Cell Rep 8:1645–1658

    CAS  Google Scholar 

  • Han DW, Tapia N, Joo JY, Greber B, Arauzo-Bravo MJ, Bernemann C, Ko K, Wu G, Stehling M, Do JT et al (2010) Epiblast stem cell subpopulations represent mouse embryos of distinct pregastrulation stages. Cell 143:617–627

    CAS  PubMed  Google Scholar 

  • Hanna J, Markoulaki S, Mitalipova M, Cheng AW, Cassady JP, Staerk J, Carey BW, Lengner CJ, Foreman R, Love J et al (2009) Metastable pluripotent states in NOD-mouse-derived ESCs. Cell Stem Cell 4:513–524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hayashi K, de Sousa Lopes SMC, Tang F, Lao K, Surani MA (2008) Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:391–401

    CAS  PubMed  Google Scholar 

  • Huang L, Szymanska K, Jensen VL, Janecke AR, Innes AM, Davis EE, Frosk P, Li C, Willer JR, Chodirker BN et al (2011) TMEM237 is mutated in individuals with a Joubert syndrome related disorder and expands the role of the TMEM family at the ciliary transition zone. Am J Hum Genet 89:713–730

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huhtala ML, Pesonen K, Kalkkinen N, Stenman UH (1982) Purification and characterization of a tumor-associated trypsin inhibitor from the urine of a patient with ovarian cancer. J Biol Chem 257:13713–13716

    CAS  PubMed  Google Scholar 

  • Jeffries CD, Perkins DO, Guan X (2010) Gene processing control loops suggested by sequencing, splicing, and RNA folding. BMC Bioinform 11:602

    CAS  Google Scholar 

  • Jouneau A, Ciaudo C, Sismeiro O, Brochard V, Jouneau L, Vandormael-Pournin S, Coppee JY, Zhou Q, Heard E, Antoniewski C et al (2012) Naive and primed murine pluripotent stem cells have distinct miRNA expression profiles. RNA (NY, NY) 18:253–264

    CAS  Google Scholar 

  • Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061

    CAS  PubMed  Google Scholar 

  • Kimura H, Kwan KM, Zhang Z, Deng JM, Darnay BG, Behringer RR, Nakamura T, de Crombrugghe B, Akiyama H (2008) Cthrc1 is a positive regulator of osteoblastic bone formation. PLoS ONE 3:e3174

    PubMed  PubMed Central  Google Scholar 

  • Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T, Grabole N, Mansfield W, Nashun B, Knezovich JG, Smith A et al (2013) Naive pluripotency is associated with global DNA hypomethylation. Nat Struct Mol Biol 20:311–316

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Clevers H (2010) Coexistence of quiescent and active adult stem cells in mammals. Science (NY, NY) 327:542–545

    CAS  Google Scholar 

  • Liu J, Ashton MP, Sumer H, O'Bryan MK, Brodnicki TC, Verma PJ (2011) Generation of stable pluripotent stem cells from NOD mouse tail-tip fibroblasts. Diabetes 60:1393–1398

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marks H, Kalkan T, Menafra R, Denissov S, Jones K, Hofemeister H, Nichols J, Kranz A, Stewart AF, Smith A et al (2012) The transcriptional and epigenomic foundations of ground state pluripotency. Cell 149:590–604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martello G, Sugimoto T, Diamanti E, Joshi A, Hannah R, Ohtsuka S, Gottgens B, Niwa H, Smith A (2012) Esrrb is a pivotal target of the Gsk3/Tcf3 axis regulating embryonic stem cell self-renewal. Cell Stem Cell 11:491–504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min IM, Waterfall JJ, Core LJ, Munroe RJ, Schimenti J, Lis JT (2011) Regulating RNA polymerase pausing and transcription elongation in embryonic stem cells. Genes Dev 25:742–754

    CAS  PubMed  PubMed Central  Google Scholar 

  • Murayama H, Masaki H, Sato H, Hayama T, Yamaguchi T, Nakauchi H (2015) Successful reprogramming of epiblast stem cells by blocking nuclear localization of beta-catenin. Stem Cell Rep 4:103–113

    CAS  Google Scholar 

  • Najm FJ, Chenoweth JG, Anderson PD, Nadeau JH, Redline RW, McKay RD, Tesar PJ (2011) Isolation of epiblast stem cells from preimplantation mouse embryos. Cell Stem Cell 8:318–325

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa M, Koyanagi M, Tanabe K, Takahashi K, Ichisaka T, Aoi T, Okita K, Mochiduki Y, Takizawa N, Yamanaka S (2008) Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol 26:101–106

    CAS  PubMed  Google Scholar 

  • Nichols J, Jones K, Phillips JM, Newland SA, Roode M, Mansfield W, Smith A, Cooke A (2009) Validated germline-competent embryonic stem cell lines from nonobese diabetic mice. Nat Med 15:814–818

    CAS  PubMed  Google Scholar 

  • Ning X, Sun S, Zhang K, Liang J, Chuai Y, Li Y, Wang X (2012) S100A6 protein negatively regulates CacyBP/SIP-mediated inhibition of gastric cancer cell proliferation and tumorigenesis. PLoS ONE 7:e30185

    CAS  PubMed  PubMed Central  Google Scholar 

  • O’Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S (2013) Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 23:281–291

    PubMed  PubMed Central  Google Scholar 

  • Orford KW, Scadden DT (2008) Deconstructing stem cell self-renewal: genetic insights into cell-cycle regulation. Nat Rev Genet 9:115–128

    CAS  PubMed  Google Scholar 

  • Papatsenko D, Darr H, Kulakovskiy IV, Waghray A, Makeev VJ, MacArthur BD, Lemischka IR (2015) Single-cell analyses of ESCs reveal alternative pluripotent cell states and molecular mechanisms that control self-renewal. Stem Cell Rep 5:207–220

    CAS  Google Scholar 

  • Park KS (2011) Tgf-Beta family signaling in embryonic stem cells. Int J Stem Cells 4:18–23

    CAS  PubMed  PubMed Central  Google Scholar 

  • Patterson KI, Brummer T, O'Brien PM, Daly RJ (2009) Dual-specificity phosphatases: critical regulators with diverse cellular targets. Biochem J 418:475–489

    CAS  PubMed  Google Scholar 

  • Pera MF, Andrade J, Houssami S, Reubinoff B, Trounson A, Stanley EG, Ward-van Oostwaard D, Mummery C (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J Cell Sci 117:1269–1280

    CAS  PubMed  Google Scholar 

  • Persaud SD, Lin YW, Wu CY, Kagechika H, Wei LN (2013) Cellular retinoic acid binding protein I mediates rapid non-canonical activation of ERK1/2 by all-trans retinoic acid. Cell Signal 25:19–25

    CAS  PubMed  Google Scholar 

  • Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA, Lui JH, Li N, Szpankowski L, Fowler B, Chen P et al (2014) Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat Biotechnol 32:1053–1058

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polo JM, Liu S, Figueroa ME, Kulalert W, Eminli S, Tan KY, Apostolou E, Stadtfeld M, Li Y, Shioda T et al (2010) Cell type of origin influences the molecular and functional properties of mouse induced pluripotent stem cells. Nat Biotechnol 28:848–855

    CAS  PubMed  PubMed Central  Google Scholar 

  • Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM, Lim SM, Borkent M, Apostolou E, Alaei S, Cloutier J et al (2012) A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–1632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Prasanth KV, Camiolo M, Chan G, Tripathi V, Denis L, Nakamura T, Hubner MR, Spector DL (2010) Nuclear organization and dynamics of 7SK RNA in regulating gene expression. Mol Biol Cell 21:4184–4196

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rahl PB, Lin CY, Seila AC, Flynn RA, McCuine S, Burge CB, Sharp PA, Young RA (2010) c-Myc regulates transcriptional pause release. Cell 141:432–445

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roux PP, Blenis J (2004) ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev 68:320–344

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rugg-Gunn PJ, Cox BJ, Lanner F, Sharma P, Ignatchenko V, McDonald AC, Garner J, Gramolini AO, Rossant J, Kislinger T (2012) Cell-surface proteomics identifies lineage-specific markers of embryo-derived stem cells. Dev Cell 22:887–901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell R, Ilg M, Lin Q, Wu G, Lechel A, Bergmann W, Eiseler T, Linta L, Kumar PP, Klingenstein M et al (2015) A dynamic role of TBX3 in the pluripotency circuitry. Stem cell Rep 5:1155–1170

    CAS  Google Scholar 

  • Shakiba N, White CA, Lipsitz YY, Yachie-Kinoshita A, Tonge PD, Hussein SMI, Puri MC, Elbaz J, Morrissey-Scoot J, Li M et al (2015) CD24 tracks divergent pluripotent states in mouse and human cells. Nat Commun 6:7329

    CAS  PubMed  Google Scholar 

  • Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253

    PubMed  PubMed Central  Google Scholar 

  • Singh AM, Hamazaki T, Hankowski KE, Terada N (2007) A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells (Dayt Ohio) 25:2534–2542

    CAS  Google Scholar 

  • Smith AG (2001) Embryo-derived stem cells: of mice and men. Annu Rev Cell Dev Biol 17:435–462

    CAS  PubMed  Google Scholar 

  • Soufi A, Donahue G, Zaret KS (2012) Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell 151:994–1004

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sridharan R, Tchieu J, Mason MJ, Yachechko R, Kuoy E, Horvath S, Zhou Q, Plath K (2009) Role of the murine reprogramming factors in the induction of pluripotency. Cell 136:364–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara A, Goto K, Sotomaru Y, Sofuni T, Ito T (2006) Current status of chromosomal abnormalities in mouse embryonic stem cell lines used in Japan. Comp Med 56:31–34

    CAS  PubMed  Google Scholar 

  • Sugimoto M, Kondo M, Koga Y, Shiura H, Ikeda R, Hirose M, Ogura A, Murakami A, Yoshiki A, de Sousa C, Lopes SM et al (2015) A simple and robust method for establishing homogeneous mouse epiblast stem cell lines by wnt inhibition. Stem Cell Rep 4:744–757

    CAS  Google Scholar 

  • Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodriguez-Esteban C, Izpisua Belmonte JC (2006a) Maintenance of embryonic stem cell pluripotency by Nanog-mediated reversal of mesoderm specification. Nat Clin Pract Cardiovasc Med 3(Suppl 1):S114–122

    CAS  PubMed  Google Scholar 

  • Suzuki A, Raya A, Kawakami Y, Morita M, Matsui T, Nakashima K, Gage FH, Rodriguez-Esteban C, Izpisua Belmonte JC (2006b) Nanog binds to Smad1 and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci USA 103:10294–10299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka TS (2009) Transcriptional heterogeneity in mouse embryonic stem cells. Reprod Fertil Dev 21:67–75

    CAS  PubMed  Google Scholar 

  • Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, Gardner RL, McKay RD (2007) New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:196–199

    CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Sci (NY NY) 282:1145–1147

    CAS  Google Scholar 

  • Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H (2008) Identification and characterization of subpopulations in undifferentiated ES cell culture. Development (Camb Engl) 135:909–918

    CAS  Google Scholar 

  • Ueda O, Jishage K, Kamada N, Uchida S, Suzuki H (1995) Production of mice entirely derived from embryonic stem (ES) cell with many passages by coculture of ES cells with cytochalasin B induced tetraploid embryos. Exp Anim 44:205–210

    CAS  PubMed  Google Scholar 

  • Vieyra DS, Rosen A, Goodell MA (2009) Identification and characterization of side population cells in embryonic stem cell cultures. Stem Cells Dev 18:1155–1166

    CAS  PubMed  Google Scholar 

  • Wang Z, Iwasaki M, Ficara F, Lin C, Matheny C, Wong SH, Smith KS, Cleary ML (2010) GSK-3 promotes conditional association of CREB and its coactivators with MEIS1 to facilitate HOX-mediated transcription and oncogenesis. Cancer Cell 17:597–608

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wernig M, Meissner A, Cassady JP, Jaenisch R (2008) c-Myc is dispensable for direct reprogramming of mouse fibroblasts. Cell Stem Cell 2:10–12

    CAS  PubMed  Google Scholar 

  • Wray J, Kalkan T, Smith AG (2010) The ground state of pluripotency. Biochem Soc Trans 38:1027–1032

    CAS  PubMed  Google Scholar 

  • Wu J, Izpisua Belmonte JC (2015) Dynamic pluripotent stem cell states and their applications. Cell Stem Cell 17:509–525

    CAS  PubMed  Google Scholar 

  • Yamaji M, Ueda J, Hayashi K, Ohta H, Yabuta Y, Kurimoto K, Nakato R, Yamada Y, Shirahige K, Saitou M (2013) PRDM14 ensures naive pluripotency through dual regulation of signaling and epigenetic pathways in mouse embryonic stem cells. Cell Stem Cell 12:368–382

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Nishimura O, Misaki K, Nishita M, Minami Y, Yonemura S, Tarui H, Sasaki H (2008) Cthrc1 selectively activates the planar cell polarity pathway of Wnt signaling by stabilizing the Wnt-receptor complex. Dev Cell 15:23–36

    CAS  PubMed  Google Scholar 

  • Ye S, Li P, Tong C, Ying QL (2013) Embryonic stem cell self-renewal pathways converge on the transcription factor Tfcp2l1. EMBO J 32:2548–2560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    CAS  PubMed  Google Scholar 

  • Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A (2008) The ground state of embryonic stem cell self-renewal. Nature 453:519–523

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Yalcin S, Lee DF, Yeh TY, Lee SM, Su J, Mungamuri SK, Rimmele P, Kennedy M, Sellers R et al (2011) FOXO1 is an essential regulator of pluripotency in human embryonic stem cells. Nat Cell Biol 13:1092–1099

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Klos M, Wilson GF, Herman AM, Lian X, Raval KK, Barron MR, Hou L, Soerens AG, Yu J et al (2012) Extracellular matrix promotes highly efficient cardiac differentiation of human pluripotent stem cells: the matrix sandwich method. Circ Res 111:1125–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Denomme MM, White CR, Leung KY, Lee MB, Greene ND, Mann MR, Trasler JM, Baltz JM (2015) Both the folate cycle and betaine-homocysteine methyltransferase contribute methyl groups for DNA methylation in mouse blastocysts. FASEB J Off Publ Fed Am Soc Exp Biol 29:1069–1079

    Google Scholar 

  • Zhao XF, Colaizzo-Anas T, Nowak NJ, Shows TB, Elliott RW, Aplan PD (1998) The mammalian homologue of mago nashi encodes a serum-inducible protein. Genomics 47:319–322

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Jacob Hanna (Weizmann Institute of Science) for the NOD/ShiLtJ ESC, Ludovic Vallier (Welcome Sanger Institute) for the NOD/ShiLtJ EpiSC, Laura Reinholdt (The Jackson Laboratory) for the NOD/ShiLtJ, WSB/EiJ, and 129S1/SvImJ ESC, and Alice Jouneau (French National Institute for Agricultural Research) for the 129 EpiSC.

Funding

This work was supported by National Institutes of Health Grants P50 MH090338 and RM1 HG008529 to DWT and U01 ES026717 to DLA, and a National Science Foundation Graduate Fellowship to TG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Threadgill.

Ethics declarations

Conflict of interest:

The authors declare no competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garbutt, T.A., Konganti, K., Konneker, T. et al. Derivation of stable embryonic stem cell-like, but transcriptionally heterogenous, induced pluripotent stem cells from non-permissive mouse strains. Mamm Genome 31, 263–286 (2020). https://doi.org/10.1007/s00335-020-09849-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-020-09849-x

Navigation