Skip to main content
Log in

Liver size and lipid content differences between BALB/c and BALB/cJ mice on a high-fat diet are due, in part, to Zhx2

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

BALB/cJ mice exhibit considerable phenotypic differences with other BALB/c substrains. Some of these traits involve the liver, including persistent postnatal expression of genes that are normally expressed only in the fetal liver and reduced expression of major urinary proteins. These traits are due to a mutation that dramatically reduces expression of the gene encoding the transcription factor Zinc fingers and homeoboxes 2 (Zhx2). BALB/cJ mice also exhibit reduced serum lipid levels and resistance to atherosclerosis compared to other mouse strains when placed on a high-fat diet. This trait is also due, at least in part, to the Zhx2 mutation. Microarray analysis identified many genes affecting lipid homeostasis, including Lipoprotein lipase, that are dysregulated in BALB/cJ liver. This led us to investigate whether hepatic lipid levels would be different between BALB/cJ and BALB/c mice when placed on a normal chow or a high-fat chow diet. On the high-fat chow, BALB/cJ mice had increased weight gain, increased liver:body weight ratio, elevated hepatic lipid accumulation and markers of liver damage when compared to BALB/c mice. These traits in BALB/cJ mice were only partially reversed by a hepatocyte-specific Zhx2 transgene. These data indicate that Zhx2 reduces liver lipid levels and is hepatoprotective in mice on a high-fat diet, but the partial rescue by the Zhx2 transgene suggests a contribution by both parenchymal and non-parenchymal cells. A model to account for the cardiovascular and liver phenotype in mice with reduced Zhx2 levels is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aravalli RN, Cressman EN, Steer CJ (2013) Cellular and molecular mechanisms of hepatocellular carcinoma: an update. Arch Toxicol 87:227–247

    Article  CAS  Google Scholar 

  • Ariza X, Graupera I, Coll M, Sola E, Barreto R, Garcia E, Moreira R, Elia C, Morales-Ruiz M, Llopis M et al (2016) Neutrophil gelatinase-associated lipocalin is a biomarker of acute-on-chronic liver failure and prognosis in cirrhosis. J Hepatol 65:57–65

    Article  CAS  Google Scholar 

  • Baffy G, Brunt EM, Caldwell SH (2012) Hepatocellular carcinoma in non-alcoholic fatty liver disease: an emerging menace. J Hepatol 56:1384–1391

    Article  Google Scholar 

  • Bahar Halpern K, Shenhav R, Matcovitch-Natan O, Toth B, Lemze D, Golan M, Massasa EE, Baydatch S, Landen S, Moor AE et al (2017) Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–356

    Article  Google Scholar 

  • Belayew A, Tilghman SM (1982) Genetic analysis of α-fetoprotein synthesis in mice. Mol Cell Biol 2:1427–1435

    Article  CAS  Google Scholar 

  • Bis JC, Kavousi M, Franceschini N, Isaacs A, Abecasis GR, Schminke U, Post WS, Smith AV, Cupples LA, Markus HS et al (2011) Meta-analysis of genome-wide association studies from the CHARGE consortium identifies common variants associated with carotid intima media thickness and plaque. Nat Genet 43:940–947

    Article  CAS  Google Scholar 

  • Blankenhorn EP, Duncan R, Huppi C, Potter M (1988) Chromosomal location of the regulator of mouse α-fetoprotein, afr-1. Genetics 119:687–691

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruix J, Boix L, Sala M, Llovet JM (2004) Focus on hepatocellular carcinoma. Cancer Cell 5:215–219

    Article  CAS  Google Scholar 

  • Clinkenbeard EL, Butler JE, Spear BT (2012) Pericentral activity of alpha-fetoprotein enhancer 3 and glutamine synthetase upstream enhancer in the adult liver are regulated by beta-catenin in mice. Hepatology 56:1892–1901

    Article  CAS  Google Scholar 

  • Creasy KT, Jiang J, Ren H, Peterson ML, Spear BT (2016) Zinc fingers and homeoboxes 2 (Zhx2) regulates sexually dimorphic cyp gene expression in the adult mouse liver. Gene Expr 17:7–17

    Article  CAS  Google Scholar 

  • Dow HC, Kreibich AS, Kaercher KA, Sankoorikal GM, Pauley ED, Lohoff FW, Ferraro TN, Li H, Brodkin ES (2011) Genetic dissection of intermale aggressive behavior in BALB/cJ and A/J mice. Genes Brain Behav 10:57–68

    Article  CAS  Google Scholar 

  • Duncan R, Matthai R, Huppi K, Roderick T, Potter M (1988) Genes that modify expression of major urinary proteins in mice. Mol Cell Biol 8:2705–2712

    Article  CAS  Google Scholar 

  • Folch J, Lees M, Sloane Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509

    CAS  PubMed  Google Scholar 

  • Gargalovic PS, Erbilgin A, Kohannim O, Pagnon J, Wang X, Castellani L, Leboeuf R, Peterson ML, Spear BT, Lusis AJ (2010) Quantitative trait locus mapping and identification of Zhx2 as a novel regulator of plasma lipid metabolism. Circ Cardiovasc Genet 3:60–67

    Article  CAS  Google Scholar 

  • Gu L, Johnson MW, Lusis AJ (1999) Quantitative trait locus analysis of plasma lipoprotein levels in an autoimmune mouse model: interactions between lipoprotein metabolism, autoimmune disease, and atherogenesis. Arterioscler Thromb Vasc Biol 19:442–453

    Article  CAS  Google Scholar 

  • Hillebrandt S, Goos C, Matern S, Lammert F (2002) Genome-wide analysis of hepatic fibrosis in inbred mice identifies the susceptibility locus Hfib1 on chromosome 15. Gastroenterology 123:2041–2051

    Article  CAS  Google Scholar 

  • Jiang J, Creasy KT, Purnell J, Peterson ML, Spear BT (2017) Zhx2 (zinc fingers and homeoboxes 2) regulates major urinary protein gene expression in the mouse liver. J Biol Chem 292:6765–6774

    Article  CAS  Google Scholar 

  • Kawata H, Yamada K, Shou Z, Mizutani T, Yazawa T, Yoshino M, Sekiguchi T, Kajitani T, Miyamoto K (2003) Zinc-fingers and homeoboxes (ZHX) 2, a novel member of the ZHX family, functions as a transcriptional repressor. Biochem J 373:747–757

    Article  CAS  Google Scholar 

  • Kirchgessner TG, LeBoeuf RC, Langner CA, Zollman S, Chang CH, Taylor BA, Schotz MC, Gordon JI, Lusis AJ (1989) Genetic and developmental regulation of the lipoprotein lipase gene: loci both distal and proximal to the lipoprotein lipase structural gene control enzyme expression. J Biol Chem 264:1473–1482

    CAS  PubMed  Google Scholar 

  • Li C, Chen W, Jiang F, Simino J, Srinivasan SR, Berenson GS, Mei H (2015) Genetic association and gene-smoking interaction study of carotid intima-media thickness at five GWAS-indicated genes: the Bogalusa Heart Study. Gene 562:226–231

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Merkel M, Weinstock PH, Chajek-Shaul T, Radner H, Yin B, Breslow JL, Goldberg IJ (1998) Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia. J Clin Invest 102:893–901

    Article  CAS  Google Scholar 

  • Morford LA, Davis C, Jin L, Dobierzewska A, Peterson ML, Spear BT (2007) The oncofetal gene glypican 3 is regulated in the postnatal liver by zinc fingers and homeoboxes 2 and in the regenerating liver by alpha-fetoprotein regulator 2. Hepatology 46:1541–1547

    Article  CAS  Google Scholar 

  • Olsson M, Lindahl G, Roushlahti E (1977) Genetic control of alpha-fetoprotein synthesis in the mouse. J Exp Med 145:819–830

    Article  CAS  Google Scholar 

  • Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to α-fetoprotein under the control of the murine raf and Rif genes. Proc Natl Acad Sci USA 81:5523–5527

    Article  CAS  Google Scholar 

  • Perincheri S, Dingle RW, Peterson ML, Spear BT (2005) Hereditary persistence of alpha-fetoprotein and H19 expression in liver of BALB/cJ mice is due to a retrovirus insertion in the Zhx2 gene. Proc Natl Acad Sci USA 102:396–401

    Article  CAS  Google Scholar 

  • Perincheri S, Peyton DK, Glenn M, Peterson ML, Spear BT (2008) Characterization of the ETnII-alpha endogenous retroviral element in the BALB/cJ Zhx2 (Afr1) allele. Mamm Genome 19:26–31

    Article  CAS  Google Scholar 

  • Peyton DK, Huang M-C, Giglia MA, Hughes NK, Spear BT (2000) The alpha-fetoprotein promoter is the target of Afr1-mediated postnatal repression. Genomics 63:173–180

    Article  CAS  Google Scholar 

  • Potter M (1985) History of the BALB/c family. Curr Top Microbiol Immunol 122:1–5

    CAS  PubMed  Google Scholar 

  • Shi Z, Wakil AE, Rockey DC (1997) Strain-specific differences in mouse hepatic wound healing are mediated by divergent T helper cytokine responses. Proc Natl Acad Sci USA 94:10663–10668

    Article  CAS  Google Scholar 

  • Song X, Tan S, Wu Z, Xu L, Wang Z, Xu Y, Wang T, Gao C, Gong Y, Liang X et al (2018) HBV suppresses ZHX2 expression to promote proliferation of HCC through miR-155 activation. Int J Cancer 143:3120–3130

    Article  CAS  Google Scholar 

  • Spear BT, Jin L, Ramasamy S, Dobierzewska A (2006) Transcriptional control in the mammalian liver: liver development, perinatal repression, and zonal gene regulation. Cell Mol Life Sci 63:2922–2938

    Article  CAS  Google Scholar 

  • Wang X, Gargalovic P, Wong J, Gu JL, Wu X, Qi H, Wen P, Xi L, Tan B, Gogliotti R et al (2004) Hyplip2, a new gene for combined hyperlipidemia and increased atherosclerosis. Arterioscler Thromb Vasc Biol 24:1928–1934

    Article  CAS  Google Scholar 

  • Wu H, Wade M, Krall L, Grisham J, Xiong Y, Van Dyke T (1996) Targeted in vivo expression of the cyclin-dependent kinase inhibitor p21 halts hepatocyte cell-cycle progression, postnatal liver development and regeneration. Genes Dev 10:245–260

    Article  CAS  Google Scholar 

  • Yamada K, Kawata H, Matsuura K, Shou Z, Hirano S, Mizutani T, Yazawa T, Yoshino M, Sekiguchi T, Kajitani T et al (2002) Functional analysis and the molecular dissection of zinc-fingers and homeoboxes 1 (ZHX1). Biochem Biophys Res Commun 297:368–374

    Article  CAS  Google Scholar 

  • Yamada K, Kawata H, Shou Z, Hirano S, Mizutani T, Yazawa T, Sekiguchi T, Yoshino M, Kajitani T, Miyamoto K (2003) Analysis of zinc-fingers and homeoboxes (ZHX)-1-interacting proteins: molecular cloning and characterization of a member of the ZHX family, ZHX3. Biochem J 373:167–178

    Article  CAS  Google Scholar 

  • Yue X, Zhang Z, Liang X, Gao L, Zhang X, Zhao D, Liu X, Ma H, Guo M, Spear BT et al (2012) Zinc fingers and homeoboxes 2 inhibits hepatocellular carcinoma cell proliferation and represses expression of Cyclins A and E. Gastroenterology 142:1559–1570

    Article  CAS  Google Scholar 

  • Zhang L, Zhang Z, Li Y, Liao S, Wu X, Chang Q, Liang B (2015) Cholesterol induces lipoprotein lipase expression in a tree shrew (Tupaia belangeri chinensis) model of non-alcoholic fatty liver disease. Sci Rep 5:15970

    Article  CAS  Google Scholar 

  • Zhou Y, Jiang L, Rui L (2009) Identification of MUP1 as a regulator for glucose and lipid metabolism in mice. J Biol Chem 284:11152–11159

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Sean Thatcher, Ryan Temel and Eun Lee, University of Kentucky, for their assistance. This study was supported by Public Health Service Grants DK059866 and DK074816 from the National Institute of Diabetes and Digestive and Kidney Diseases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brett T. Spear.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clinkenbeard, E.L., Turpin, C., Jiang, J. et al. Liver size and lipid content differences between BALB/c and BALB/cJ mice on a high-fat diet are due, in part, to Zhx2. Mamm Genome 30, 226–236 (2019). https://doi.org/10.1007/s00335-019-09811-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-019-09811-6

Navigation