Skip to main content

Advertisement

Log in

Fearful old world? A commentary on the Second International Summit on human genome editing

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Genome editing is revolutionising our ability to modify genomes with exquisite precision for medical and agricultural applications, and in basic research. The first International Summit on Human Genome Editing, organised jointly by the US National Academies of Sciences and Medicine, the Chinese Academy of Sciences and the UK Royal Society, was held in Washington DC at the end of 2015. Its aim was to explore scientific, legal and ethical perspectives on the prospective use of human genome editing as a therapeutic intervention in disease (so-called somatic genome editing) and as a possible intervention in human reproduction (so-called germ-line genome editing). Following that Summit, the Organising Committee had, in a press release, come to the conclusion that: “It would be irresponsible to proceed with any clinical use of germ line editing unless and until (i) the relevant safety and efficacy issues have been resolved, based on appropriate understanding and balancing of risks, potential benefits and alternatives, and (ii) there is broad societal consensus about the appropriateness of the proposed application” (http://www8.nationalacademies.org/onpinews/newsitem.aspx?RecordID=12032015a). A report from the US National Academies subsequently reiterated and developed the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adikusuma F, Piltz S, Corbett MA, Turvey M, McColl SR, Helbig KJ, Beard MR, Hughes J, Pomerantz RT, Thomas PQ (2018) Large deletions induced by Cas9 cleavage. Nature 560:E8–E9

    Article  CAS  PubMed  Google Scholar 

  • Ayabe S, Nakashima K, Yoshiki A (2018) Off- and on-target effects of genome editing in mouse embryos. J Reprod Dev. https://doi.org/10.1262/jrd.2018-128

    Article  PubMed  PubMed Central  Google Scholar 

  • Codner GF, Mianne J, Caulder A, Loeffler J, Fell R, King R, Allan AJ, Mackenzie M, Pike FJ, McCabe CV, Christou S, Joynson S, Hutchison M, Stewart ME, Kumar S, Simon MM, Agius L, Anstee QM, Volynski KE, Kullmann DM, Wells S, Teboul L (2018) Application of long single-stranded DNA donors in genome editing: generation and validation of mouse mutants. BMC Biol 16:70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Wert G, Pennings G, Clarke A, Eichenlaub-Ritter U, van El CG, Forzano F, Goddijn M, Heindryckx B, Howard HC, Radojkovic D, Rial-Sebbag E, Tarlatzis BC, Cornel MC, European Society of Human G, European Society of Human R, Embryology (2018) Human germline gene editing: Recommendations of ESHG and ESHRE. Eur J Hum Genet 26:445–449

    Article  PubMed  PubMed Central  Google Scholar 

  • Egli D, Zuccaro MV, Kosicki M, Church GM, Bradley A, Jasin M (2018) Inter-homologue repair in fertilized human eggs? Nature 560:E5–E7

    Article  CAS  PubMed  Google Scholar 

  • Fogarty NME, McCarthy A, Snijders KE, Powell BE, Kubikova N, Blakeley P, Lea R, Elder K, Wamaitha SE, Kim D, Maciulyte V, Kleinjung J, Kim JS, Wells D, Vallier L, Bertero A, Turner JMA, Niakan KK (2017) Genome editing reveals a role for OCT4 in human embryogenesis. Nature 550:67–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greenfield A (2018a) I remember where I was when I heard about the world’s first genome-edited babies. Bionews 978. https://www.bionews.org.uk/page_140216

  • Greenfield A (2018b) Carry on Editing. Br Med Bull 127:23–31

    Article  PubMed  Google Scholar 

  • Greenfield A, Braude P, Flinter F, Lovell-Badge R, Ogilvie C, Perry ACF (2017) Assisted reproductive technologies to prevent human mitochondrial disease transmission. Nat Biotechnol 35:1059–1068

    Article  CAS  PubMed  Google Scholar 

  • Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR (2018) Evolved Cas9 variants with broad PAM compatibility and high DNA specificity. Nature 556:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jasanoff S, Hurlbut JB (2018) A global observatory for gene editing. Nature 555:435–437

    Article  CAS  PubMed  Google Scholar 

  • Kim YB, Komor AC, Levy JM, Packer MS, Zhao KT, Liu DR (2017) Increasing the genome-targeting scope and precision of base editing with engineered Cas9-cytidine deaminase fusions. Nat Biotechnol 35:371–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR (2016) Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:420–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosicki M, Tomberg K, Bradley A (2018) Repair of double-strand breaks induced by CRISPR-Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 36:765–771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang P, Ding C, Sun H, Xie X, Xu Y, Zhang X, Sun Y, Xiong Y, Ma W, Liu Y, Wang Y, Fang J, Liu D, Songyang Z, Zhou C, Huang J (2017) Correction of beta-thalassemia mutant by base editor in human embryos. Protein Cell 8:811–822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma H, Marti-Gutierrez N, Park SW, Wu J, Lee Y, Suzuki K, Koski A, Ji D, Hayama T, Ahmed R, Darby H, Van Dyken C, Li Y, Kang E, Park AR, Kim D, Kim ST, Gong J, Gu Y, Xu X, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Heitner SB, Belmonte JCI, Amato P, Kim JS, Kaul S, Mitalipov S (2017) Correction of a pathogenic gene mutation in human embryos. Nature 548:413–419

    Article  CAS  PubMed  Google Scholar 

  • Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D, Suzuki K, Gu Y, Gong J, Xu X, Ahmed R, Lee Y, Kang E, Ji D, Park AR, Kim D, Kim ST, Heitner SB, Battaglia D, Krieg SA, Lee DM, Wu DH, Wolf DP, Amato P, Kaul S, Belmonte JCI, Kim JS, Mitalipov S (2018) Ma et al. reply. Nature 560:E10–E23

    Article  CAS  PubMed  Google Scholar 

  • National Academies of Sciences, Engineering and Medicine (2017) Human genome editing: science, ethics and governance. National Academies Press, Washington DC

    Google Scholar 

  • Nuffield Council on Bioethics (2018) Genome Editing and human reproduction: social and ethcial issues. Nuffield Council on Bioethics, London

    Google Scholar 

  • Rees HA, Komor AC, Yeh WH, Caetano-Lopes J, Warman M, Edge ASB, Liu DR (2017) Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery. Nat Commun 8:15790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin HY, Wang C, Lee HK, Yoo KH, Zeng X, Kuhns T, Yang CM, Mohr T, Liu C, Hennighausen L (2017) CRISPR/Cas9 targeting events cause complex deletions and insertions at 17 sites in the mouse genome. Nat Commun 8:15464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steffann J, Jouannet P, Bonnefont JP, Chneiweiss H, Frydman N (2018) Could failure in preimplantation genetic diagnosis justify editing the human embryo genome? Cell Stem Cell 22:481–482

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Li Y, Zuo E, Sun Y, Wei W, Yuan T, Ying W, Steinmetz L (2018) Base editing generates substantial off-target single nucleotide variants. Biorxiv. https://doi.org/10.1101/480145

    Article  Google Scholar 

  • Yeh WH, Chiang H, Rees HA, Edge ASB, Liu DR (2018) In vivo base editing of post-mitotic sensory cells. Nat Commun 9:2184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by Medical Research Council (UK) (Grant No. MC_U142684167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andy Greenfield.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greenfield, A. Fearful old world? A commentary on the Second International Summit on human genome editing. Mamm Genome 30, 1–4 (2019). https://doi.org/10.1007/s00335-018-9791-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-018-9791-2

Navigation