Skip to main content

Advertisement

Log in

Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size

  • Published:
Mammalian Genome Aims and scope Submit manuscript

A Correction to this article was published on 04 December 2018

This article has been updated

Abstract

Heart size is an important factor in cardiac health and disease. In particular, increased heart weight is predictive of adverse cardiovascular outcomes in multiple large community-based studies. We use two cohorts of Diversity Outbred (DO) mice to investigate the role of genetics, sex, age, and diet on heart size. DO mice (n = 289) of both sexes from generation 10 were fed a standard chow diet, and analyzed at 12–15 weeks of age. Another cohort of female DO mice (n = 258) from generation 11 were fed either a high-fat, cholesterol-containing (HFC) diet or a low-fat, high-protein diet, and analyzed at 24–25 weeks. We did not observe an effect of diet on body or heart weight in generation 11 mice, although we previously reported an effect on other cardiovascular risk factors, including cholesterol, triglycerides, and insulin. We do observe a significant genetic effect on heart weight in this population. We identified two quantitative trait loci for heart weight, one (Hwtf1) at a genome-wide significance level of p ≤ 0.05 on MMU15 and one (Hwtf2) at a genome-wide suggestive level of p ≤ 0.1 on MMU10, that together explain 13.3% of the phenotypic variance. Hwtf1 contained collagen type XXII alpha 1 chain (Col22a1), and the NZO/HlLtJ and WSB/EiJ haplotypes were associated with larger hearts. This is consistent with heart tissue Col22a1 expression in DO founders and SNP patterns within Hwtf1 for Col22a1. Col22a1 has been previously associated with cardiac fibrosis in mice, suggesting that Col22a1 may be involved in pathological cardiac hypertrophy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Change history

  • 04 December 2018

    The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

  • 04 December 2018

    The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

  • 04 December 2018

    The original article has been published with an incorrect text in Materials and Methods section. The corrected text should read as.

References

  • Bikkina M, Levy D, Evans JC, Larson MG, Benjamin EJ, Wolf PA, Castelli WP (1994) Left ventricular mass and risk of stroke in an elderly cohort: the Framingham Heart Study. JAMA 272(1):33–36. https://doi.org/10.1001/jama.1994.03520010045030

    Article  CAS  PubMed  Google Scholar 

  • Broman KW (2014) Fourteen years of R/qtl: just barely sustainable. J Open Res Softw 2(1):e11

    Article  PubMed  PubMed Central  Google Scholar 

  • Chesler EJ, Gatti DM, Morgan AP, Strobel M, Trepanier L, Oberbeck D et al (2016) Diversity outbred mice at 21: maintaining allelic variation in the face of selection. G3: Genes Genomes Genet 6(12):3893–3902

    Article  Google Scholar 

  • Churchill GA, Gatti DM, Munger SC, Svenson KL (2012) The diversity outbred mouse population. Mamm Genome 23(9–10):713–718

    Article  PubMed  PubMed Central  Google Scholar 

  • Coffey AR, Smallwood TL, Albright J, Hua K, Kanke M, Pomp D et al (2017) Systems genetics identifies a co-regulated module of liver microRNAs associated with plasma LDL cholesterol in murine diet-induced dyslipidemia. Physiol Genomics 49(11):618–629. https://doi.org/10.1152/physiolgenomics.00050.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuspidi C, Rescaldani M, Sala C, Grassi G (2014) Left-ventricular hypertrophy and obesity: a systematic review and meta-analysis of echocardiographic studies. J Hypertens 32(1):16–25. https://doi.org/10.1097/HJH.0b013e328364fb58

    Article  CAS  PubMed  Google Scholar 

  • Deschepper CF, Boutin-Ganache I, Zahabi A, Jiang Z (2002) In search of cardiovascular candidate genes: interactions between phenotypes and genotypes. Hypertension 39:332–336

    Article  CAS  PubMed  Google Scholar 

  • Dickson PE, Ndukum J, Wilcox T, Clark J, Roy B, Zhang L et al (2015) Association of novelty-related behaviors and intravenous cocaine self-administration in Diversity Outbred mice. Psychopharmacology 232(6):1011–1024

    Article  CAS  PubMed  Google Scholar 

  • Fox ER, Musani SK, Barbalic M, Lin H, Yu B, Ogunyankin KO et al (2013) Genome-wide association study of cardiac structure and systolic function in African Americans: the Candidate Gene Association Resource (CARe) Study. Cardiovasc Genet 6(1):37–46

    Article  Google Scholar 

  • Gardin JM, McClelland R, Kitzman D et al (2001) M-mode echocardiographic disease predictors of six-to seven -year incidence of coronary heart disease, stroke, congestive heart failure, and mortality in an elderly cohort (the Cardiovascular Health Study). Am J Cardiol 87:1051–1057

    Article  CAS  PubMed  Google Scholar 

  • Gatti DM, Svenson KL, Shabalin A, Wu LY, Valdar W, Simecek P et al (2014) Quantitative trait locus mapping methods for diversity outbred mice. G3: Genes Genomes Genet 4(9):1623–1633

    Article  Google Scholar 

  • Houser SR, Margulies KB, Murphy AM, Spinale FG, Francis GS et al (2012) Animal models of heart failure: a scientific statement from the American Heart Association. Circ Res 111:131–150. https://doi.org/10.1161/RES.0b013e3182582523

    Article  CAS  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K et al (2012) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477(7364):289–294

    Article  CAS  Google Scholar 

  • King EG, Long AD (2017) The Beavis effect in next-generation mapping panels in Drosophila melanogaster. G3: Genes Genomes Genet 7(6):1643–1652

    CAS  Google Scholar 

  • Koch M, Schulze J, Hansen U, Ashwodt T, Keene DR, Brunken WJ et al (2004) A novel marker of tissue junctions, collagen XXII. J Biol Chem 279(21):22514–22521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolwicz SC, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of the cardiomyocte. Circ Res 113(5):603–616

    Article  CAS  PubMed  Google Scholar 

  • Leamy LJ, Elo K, Nielsen MK, Van Vleck LD, Pomp D (2005) Genetic variance and covariance patterns for body weight and energy balance characters in an advanced intercross population of mice. Genet Sel Evol 37(3):151–173

    Article  PubMed  PubMed Central  Google Scholar 

  • Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1989) Left ventricular mass and incidence of coronary heart disease in an elderly cohort: the Framingham Heart Study. Ann Intern Med 110:101–107

    Article  CAS  PubMed  Google Scholar 

  • Levy D, Garrison RJ, Savage DD et al (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Berndt A, Sundberg BA, Silva KA, Kennedy VE, Cario CL et al (2016) Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11 and 15 for age-related cardiac fibrosis. Mamm Genome 27(5–6):179–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Llamas B, Jiang Z, Rainville ML, Picard S, Deschepper CF (2005) Distinct QTLs are linked to cardiac left ventricular mass in a sex-specific manner in a normotensive inbred rat intercross. Mamm Genome 16:700–712

    Article  CAS  PubMed  Google Scholar 

  • Llamas B, Bélanger S, Picard S, Deschepper CF (2007) Cardiac mass and cardiomyocyte size are governed by different genetic loci on either autosomes or chromosome Y in recombinant inbred mice. Physiol Genomics 31:176–182. https://doi.org/10.1152/physiolgenomics.00072.2007

    Article  CAS  PubMed  Google Scholar 

  • Logan RW, Robledo RF, Recla JM, Philip VM, Bubier JA, Jay JJ et al (2013) High-precision genetic mapping of behavioral traits in the diversity outbred mouse population. Genes Brain Behav 12(4):424–437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morgan AP, Fu CP, Kao CY, Welsh CE, Didion JP, Yadgary L et al (2016) The Mouse universal genotyping array: from substrains to subspecies. G3: Genes Genomes Genet 6(2):263–279

    Article  CAS  Google Scholar 

  • Neeland IJ, Gupta S, Ayers CR, Turer AT, Rame EJ, Das SR et al (2013) Relation of regional fat distribution to left ventricular structure and function. Circ Cardiovasc Imaging 6(5):800–807

    Article  PubMed  PubMed Central  Google Scholar 

  • Philip VM, Sokoloff G, Ackert-Bicknell CL, Striz M, Branstetter L, Beckmann MA et al (2011) Genetic analysis in the collaborative cross breeding population. Genome Res 21(8):1223–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rau CD, Wang J, Avetisyan R, Romay M, Martin L, Ren S et al (2015) Mapping genetic contributions to cardiac pathology induced by Beta-adrenergic stimulation in mice. Circ Cardiovasc Genet 8(1):40–49

    Article  CAS  PubMed  Google Scholar 

  • Recla JM, Robledo RF, Gatti DM, Bult CJ, Churchill GA, Chesler EJ (2014) Precise genetic mapping and integrative bioinformatics in Diversity Outbred mice reveals Hydin as a novel pain gene. Mamm Genome 25(5–6):211–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rocha JL, Eisen EJ, Van Vleck LD, Pomp D (2004) A large-sample QTL study in mice: II. Body composition. Mamm Genome 15:100–113

    Article  CAS  PubMed  Google Scholar 

  • Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159(1):371–387

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shah S, Nelson CP, Gaunt TR, van der Harst P, Barnes T, Braund PS et al (2011) Four genetic loci influencing electrocardiographic indices of left ventricular hypertrophy. Circ Cardiovasc Genet 4(6):626–635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimizu I, Minamino T (2016) Physiological and pathological cardiac hypertrophy. J Mol Cell Cardiol 97:245–262

    Article  CAS  PubMed  Google Scholar 

  • Shorter JR, Odet F, Aylor DL, Pan W, Kao CY et al (2017) Male infertility is responsible for nearly half of the extinction observed in the collaborative cross. Genetics 206:557–572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smallwood TL, Gatti DM, Quizon P, Weinstock GM, Jung KC, Zhao L et al (2014) High-resolution genetic mapping in the diversity outbred mouse population identifies Apobec1 as a candidate gene for atherosclerosis. G3: Genes Genomes Genet 4(12):2353–2363

    Article  Google Scholar 

  • Srivastava A, Morgan AP, Najarian M, Sarsani VK, Sigmon JS et al (2017) The genomes of the collaborative cross. Genetics 206:537–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sugiyama F, Churchill GA, Li R, Libby LJ, Carver T, Yagami K, John SW, Paigen B (2002) QTL associated with blood pressure, heart rate, and heart weight in CBA/CaJ and BALB/cJ mice. Physiol Genomics 10:5–12

    Article  CAS  PubMed  Google Scholar 

  • Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ et al (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190(2):437–447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sweeney G (2010) Cardiovascular effects of leptin. Nat Rev Cardiol 7:22–29

    Article  CAS  PubMed  Google Scholar 

  • Travers JG, Kamal FA, Robbins J, Yutzey KE, Blaxall BC (2016) Cardiac fibrosis: the fibroblast awakens. Circ Res 118(6):1021–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsujita Y, Iwai N, Tamaki S, Nakamura Y, Nishimura M, Kinoshita M (2000) Genetic mapping of quantitative trait loci influencing left ventricular mass in rats. Am J Physiol Heart Circ Physiol 279:H2062–H2067

    Article  CAS  PubMed  Google Scholar 

  • Tyler AL, Ji B, Gatti DM, Munger SC, Churchill GA, Svenson KL, Carter GW (2017) Epistatic networks jointly influence phenotypes related to metabolic disease and gene expression in diversity outbred mice. Genetics 206(2):621–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Vliet P, Wu SM, Zaffran S, Pucéat M (2012) Early cardiac development: a view from stem cells to embryos. Cardiovasc Res 96(3):352–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB et al (2009) Genetic variants associated with cardiac structure and function: a meta-analysis and replication of genome-wide association data. JAMA 302(2):168–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welsh CE, Miller DR, Manly KF, Wang J, McMillan L et al (2012) Status and access to the collaborative cross population. Mamm Genome 23:706–712

    Article  PubMed  PubMed Central  Google Scholar 

  • Wild PS, Felix JF, Schillert A, Teumer A, Chen MH, Leening MJG et al (2017) Large-scale genome-wide analysis identifies genetic variants associated with cardiac structure and function. J Clin Invest 127(5):1798–1812

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter JM, Gildea DE, Andreas JP, Gatti DM, Williams KA, Lee M, Hu Y et al (2016) Mapping complex traits in a diversity outbred F1 mouse population identifies germline modifiers of metastasis in human prostate cancer. Cell Syst 4:31.e6–45.e6

    Google Scholar 

  • Woodiwiss AJ, Libhaber CD, Majane OH, Libhaber E, Maseko M, Norton GR (2008) Obesity promotes left ventricular concentric rather than eccentric geometric remodeling and hypertrophy independent of blood pressure. Am J Hypertens 21:1144–1151

    Article  PubMed  Google Scholar 

  • Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NIH Grants DK076050 and DK087346 (DP) and the UAI Research Foundation (BCJ). Phenotypes were collected using the Animal Metabolism Phenotyping core facility within UNC’s Nutrition and Obesity Research Center funded by NIH DK056350. We also acknowledge George Weinstock and The Genome Institute (Washington University) for partial funding of the mouse purchase and husbandry costs for cohort 2 of the DO mice used in these studies. We thank Liyang Zhao and Kuo-Chen Jung for assistance with all mouse experiments, and Brian Bennett and Tangi Smallwood for assistance with the cohort 2 experiments. We thank Martin Ferris for analysis support. Charles Farber is gratefully acknowledged for performing the femur length phenotyping and providing those data for use in these studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John R. Shorter or Brian C. Jensen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2017_9730_MOESM1_ESM.tif

Fig. S1 Mapping heart weight as a function of other characteristics. A) QTL mapping of 547 DO mice for heart weight without an adjustment for total body size. B) QTL mapping of 547 DO mice for heart weight as a function of total body weight. C) QTL mapping of 547 DO mice for heart weight as a function of femur length, which is represented in Figure 1. Horizontal lines represent significance threshold from permutation testing (dashed line at p value =0.05, dotted line at p value =0.1). (TIF 17716 KB)

335_2017_9730_MOESM2_ESM.tif

Fig. S2 Mapping heart weight as a function of femur length across each generation. A) QTL mapping of 289 male and female DO G10 mice for heart weight as a function of femur length. B) QTL mapping of 258 female DO G11 mice for heart weight as a function of femur length. C) QTL mapping of 547 DO mice across both generations for heart weight as a function of femur length, which is represented in Figure 1. (TIF 18693 KB)

335_2017_9730_MOESM3_ESM.tif

Fig. S3 Transcription expression patterns of QTL candidate genes. Blue circles represent male mice, pink circles represent female mice. A) Expression profiles of 4 candidate genes selected near the QTL peak identified on chromosome 10. B) Expression profiles of eight candidate genes selected near the QTL peak identified on chromosome 15. (TIF 15028 KB)

Supplementary material 1 (XLSX 42 KB)

Supplementary material 2 (XLSX 56 KB)

Supplementary material 3 (XLSX 88 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shorter, J.R., Huang, W., Beak, J.Y. et al. Quantitative trait mapping in Diversity Outbred mice identifies two genomic regions associated with heart size. Mamm Genome 29, 80–89 (2018). https://doi.org/10.1007/s00335-017-9730-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-017-9730-7

Keywords

Navigation