Advertisement

Mammalian Genome

, Volume 29, Issue 3–4, pp 205–228 | Cite as

CRISPR-based strategies for studying regulatory elements and chromatin structure in mammalian gene control

  • Cia-Hin Lau
  • Yousin Suh
Article

Abstract

The development of high-throughput methods has enabled the genome-wide identification of putative regulatory elements in a wide variety of mammalian cells at an unprecedented resolution. Extensive genomic studies have revealed the important role of regulatory elements and genetic variation therein in disease formation and risk. In most cases, there is only correlative evidence for the roles of these elements and non-coding changes within these elements in pathogenesis. With the advent of genome- and epigenome-editing tools based on the CRISPR technology, it is now possible to test the functional relevance of the regulatory elements and alterations on a genomic scale. Here, we review the various CRISPR-based strategies that have been developed to functionally validate the candidate regulatory elements in mammals as well as the non-coding genetic variants found to be associated with human disease. We also discuss how these synthetic biology tools have helped to elucidate the role of three-dimensional nuclear architecture and higher-order chromatin organization in shaping functional genome and controlling gene expression.

Notes

Acknowledgements

This work was funded by NIH Grants: AG017242, GM104459, and CA180126 (Suh).

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Avellino R, Havermans M, Erpelinck C, Sanders MA, Hoogenboezem R, van de Werken HJ, Rombouts E, van Lom K, van Strien PM, Gebhard C, Rehli M, Pimanda J, Beck D, Erkeland S, Kuiken T, de Looper H, Groschel S, Touw I, Bindels E, Delwel R (2016) An autonomous CEBPA enhancer specific for myeloid-lineage priming and neutrophilic differentiation. Blood 127:2991–3003.  https://doi.org/10.1182/blood-2016-01-695759 PubMedPubMedCentralCrossRefGoogle Scholar
  2. Bailey SD, Desai K, Kron KJ, Mazrooei P, Sinnott-Armstrong NA, Treloar AE, Dowar M, Thu KL, Cescon DW, Silvester J, Yang SY, Wu X, Pezo RC, Haibe-Kains B, Mak TW, Bedard PL, Pugh TJ, Sallari RC, Lupien M (2016) Noncoding somatic and inherited single-nucleotide variants converge to promote ESR1 expression in breast cancer. Nat Genet 48:1260–1266.  https://doi.org/10.1038/ng.3650 PubMedPubMedCentralCrossRefGoogle Scholar
  3. Barkal AA, Srinivasan S, Hashimoto T, Gifford DK, Sherwood RI (2016) Cas9 functionally opens chromatin. PLoS ONE 11:e0152683.  https://doi.org/10.1371/journal.pone.0152683 PubMedPubMedCentralCrossRefGoogle Scholar
  4. Barrangou R, Doudna JA (2016) Applications of CRISPR technologies in research and beyond. Nat Biotechnol 34:933–941.  https://doi.org/10.1038/nbt.3659 PubMedCrossRefGoogle Scholar
  5. Beagrie RA, Scialdone A, Schueler M, Kraemer DC, Chotalia M, Xie SQ, Barbieri M, de Santiago I, Lavitas LM, Branco MR, Fraser J, Dostie J, Game L, Dillon N, Edwards PA, Nicodemi M, Pombo A (2017) Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543:519–524.  https://doi.org/10.1038/nature21411 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Blinka S, Reimer MH Jr, Pulakanti K, Rao S (2016) Super-enhancers at the nanog locus differentially regulate neighboring pluripotency-associated genes. Cell Rep 17:19–28.  https://doi.org/10.1016/j.celrep.2016.09.002 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L, Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot J-P, Tanay A, Cavalli G (2017) Multiscale 3D genome rewiring during mouse neural development. Cell 171:557–572.e524.  https://doi.org/10.1016/j.cell.2017.09.043 PubMedPubMedCentralCrossRefGoogle Scholar
  8. Canver MC, Smith EC, Sher F, Pinello L, Sanjana NE, Shalem O, Chen DD, Schupp PG, Vinjamur DS, Garcia SP, Luc S, Kurita R, Nakamura Y, Fujiwara Y, Maeda T, Yuan GC, Zhang F, Orkin SH, Bauer DE (2015) BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527:192–197.  https://doi.org/10.1038/nature15521 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Carleton JB, Berrett KC, Gertz J (2017) Multiplex enhancer interference reveals collaborative control of gene regulation by estrogen receptor alpha-bound enhancers. Cell Syst 5:333–344.  https://doi.org/10.1016/j.cels.2017.08.011 PubMedCrossRefGoogle Scholar
  10. Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, Zhang W, Li GW, Park J, Blackburn EH, Weissman JS, Qi LS, Huang B (2013) Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155:1479–1491.  https://doi.org/10.1016/j.cell.2013.12.001 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Chen X, Rinsma M, Janssen JM, Liu J, Maggio I, Goncalves MA (2016) Probing the impact of chromatin conformation on genome editing tools. Nucleic Acids Res 44:6482–6492.  https://doi.org/10.1093/nar/gkw524 PubMedPubMedCentralCrossRefGoogle Scholar
  12. Chen F, Ding X, Feng Y, Seebeck T, Jiang Y, Davis GD (2017a) Targeted activation of diverse CRISPR-Cas systems for mammalian genome editing via proximal CRISPR targeting. Nat Commun 8:14958.  https://doi.org/10.1038/ncomms14958 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Chen X, Liu J, Janssen JM, Goncalves M (2017b) The chromatin structure differentially impacts high-specificity CRISPR-Cas9 nuclease strategies. Mol Ther Nucleic Acids 8:558–563.  https://doi.org/10.1016/j.omtn.2017.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cinghu S, Yang P, Kosak JP, Conway AE, Kumar D, Oldfield AJ, Adelman K, Jothi R (2017) Intragenic enhancers attenuate host gene expression. Mol Cell 68:104e106–117e106.  https://doi.org/10.1016/j.molcel.2017.09.010 CrossRefGoogle Scholar
  15. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, Glunk V, Sousa IS, Beaudry JL, Puviindran V, Abdennur NA, Liu J, Svensson PA, Hsu YH, Drucker DJ, Mellgren G, Hui CC, Hauner H, Kellis M (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373:895–907.  https://doi.org/10.1056/NEJMoa1502214 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823.  https://doi.org/10.1126/science.1231143 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Cooper S, Guo H, Friedman AD (2015) The + 37 kb Cebpa enhancer is critical for Cebpa myeloid gene expression and contains functional sites that bind SCL, GATA2, C/EBPalpha, PU.1, and additional Ets factors. PLoS ONE 10:e0126385.  https://doi.org/10.1371/journal.pone.0126385 PubMedPubMedCentralCrossRefGoogle Scholar
  18. Cruz-Molina S, Respuela P, Tebartz C, Kolovos P, Nikolic M, Fueyo R, van Ijcken WFJ, Grosveld F, Frommolt P, Bazzi H, Rada-Iglesias A (2017) PRC2 facilitates the regulatory topology required for poised enhancer function during pluripotent stem cell differentiation. Cell Stem Cell.  https://doi.org/10.1016/j.stem.2017.02.004 PubMedGoogle Scholar
  19. Dao LTM, Galindo-Albarran AO, Castro-Mondragon JA, Andrieu-Soler C, Medina-Rivera A, Souaid C, Charbonnier G, Griffon A, Vanhille L, Stephen T, Alomairi J, Martin D, Torres M, Fernandez N, Soler E, van Helden J, Puthier D, Spicuglia S (2017) Genome-wide characterization of mammalian promoters with distal enhancer functions. Nat Genet 49:1073–1081.  https://doi.org/10.1038/ng.3884 PubMedCrossRefGoogle Scholar
  20. Das S, Senapati P, Chen Z, Reddy MA, Ganguly R, Lanting L, Mandi V, Bansal A, Leung A, Zhang S, Jia Y, Wu X, Schones DE, Natarajan R (2017) Regulation of angiotensin II actions by enhancers and super-enhancers in vascular smooth muscle cells. Nat Commun 8:1467.  https://doi.org/10.1038/s41467-017-01629-7 PubMedPubMedCentralCrossRefGoogle Scholar
  21. de Wit E, Vos ES, Holwerda SJ, Valdes-Quezada C, Verstegen MJ, Teunissen H, Splinter E, Wijchers PJ, Krijger PH, de Laat W (2015) CTCF binding polarity determines chromatin looping. Mol Cell 60:676–684.  https://doi.org/10.1016/j.molcel.2015.09.023 PubMedCrossRefGoogle Scholar
  22. Deplancke B, Alpern D, Gardeux V (2016) The genetics of transcription factor DNA binding variation. Cell 166:538–554.  https://doi.org/10.1016/j.cell.2016.07.012 PubMedCrossRefGoogle Scholar
  23. Diao Y, Li B, Meng Z, Jung I, Lee AY, Dixon J, Maliskova L, Guan KL, Shen Y, Ren B (2016) A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res 26:397–405.  https://doi.org/10.1101/gr.197152.115 PubMedPubMedCentralCrossRefGoogle Scholar
  24. Du D, Roguev A, Gordon DE, Chen M, Chen SH, Shales M, Shen JP, Ideker T, Mali P, Qi LS, Krogan NJ (2017) Genetic interaction mapping in mammalian cells using CRISPR interference. Nat Methods 14:577–580.  https://doi.org/10.1038/nmeth.4286 PubMedPubMedCentralCrossRefGoogle Scholar
  25. ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74.  https://doi.org/10.1038/nature11247 CrossRefGoogle Scholar
  26. Ferreira LM, Meissner TB, Mikkelsen TS, Mallard W, O’Donnell CW, Tilburgs T, Gomes HA, Camahort R, Sherwood RI, Gifford DK, Rinn JL, Cowan CA, Strominger JL (2016) A distant trophoblast-specific enhancer controls HLA-G expression at the maternal-fetal interface. Proc Natl Acad Sci USA 113:5364–5369.  https://doi.org/10.1073/pnas.1602886113 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Finucane HK, Bulik-Sullivan B, Gusev A, Trynka G, Reshef Y, Loh PR, Anttila V, Xu H, Zang C, Farh K, Ripke S, Day FR, ReproGen C, Schizophrenia Working Group of the Psychiatric Genomics Consortium, RACI Consortium, Purcell S, Stahl E, Lindstrom S, Perry JR, Okada Y, Raychaudhuri S, Daly MJ, Patterson N, Neale BM, Price AL (2015) Partitioning heritability by functional annotation using genome-wide association summary statistics. Nat Genet 47:1228–1235.  https://doi.org/10.1038/ng.3404 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Flavahan WA, Drier Y, Liau BB, Gillespie SM, Venteicher AS, Stemmer-Rachamimov AO, Suva ML, Bernstein BE (2016) Insulator dysfunction and oncogene activation in IDH mutant gliomas. Nature 529:110–114.  https://doi.org/10.1038/nature16490 PubMedCrossRefGoogle Scholar
  29. Forrest MP, Zhang H, Moy W, McGowan H, Leites C, Dionisio LE, Xu Z, Shi J, Sanders AR, Greenleaf WJ, Cowan CA, Pang ZP, Gejman PV, Penzes P, Duan J (2017) Open chromatin profiling in hiPSC-derived neurons prioritizes functional noncoding psychiatric risk variants and highlights neurodevelopmental loci. Cell Stem Cell 21:305–318 e308.  https://doi.org/10.1016/j.stem.2017.07.008 PubMedCrossRefGoogle Scholar
  30. Frank CL, Liu F, Wijayatunge R, Song L, Biegler MT, Yang MG, Vockley CM, Safi A, Gersbach CA, Crawford GE, West AE (2015) Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat Neurosci 18:647–656.  https://doi.org/10.1038/nn.3995 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Fu Y, Rocha PP, Luo VM, Raviram R, Deng Y, Mazzoni EO, Skok JA (2016) CRISPR-dCas9 and sgRNA scaffolds enable dual-colour live imaging of satellite sequences and repeat-enriched individual loci. Nat Commun 7:11707.  https://doi.org/10.1038/ncomms11707 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Fujita T, Yuno M, Suzuki Y, Sugano S, Fujii H (2017) Identification of physical interactions between genomic regions by enChIP-SEq. Genes Cells 22:506–520.  https://doi.org/10.1111/gtc.12492 PubMedCrossRefGoogle Scholar
  33. Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR, Perez EM, Kane M, Cleary B, Lander ES, Engreitz JM (2016) Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:769–773.  https://doi.org/10.1126/science.aag2445 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Ghirlando R, Felsenfeld G (2016) CTCF: making the right connections. Genes Dev 30:881–891.  https://doi.org/10.1101/gad.277863.116 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Gomez-Velazquez M, Badia-Careaga C, Lechuga-Vieco AV, Nieto-Arellano R, Tena JJ, Rollan I, Alvarez A, Torroja C, Caceres EF, Roy AR, Galjart N, Delgado-Olguin P, Sanchez-Cabo F, Enriquez JA, Gomez-Skarmeta JL, Manzanares M (2017) CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart. PLoS Genet 13:e1006985.  https://doi.org/10.1371/journal.pgen.1006985 PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gonen N, Quinn A, O’Neill HC, Koopman P, Lovell-Badge R (2017) Normal levels of Sox9 expression in the developing mouse testis depend on the TES/TESCO enhancer, but this does not act alone. PLoS Genet 13:e1006520.  https://doi.org/10.1371/journal.pgen.1006520 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Guo Y, Xu Q, Canzio D, Shou J, Li J, Gorkin DU, Jung I, Wu H, Zhai Y, Tang Y, Lu Y, Wu Y, Jia Z, Li W, Zhang MQ, Ren B, Krainer AR, Maniatis T, Wu Q (2015) CRISPR inversion of CTCF sites alters genome topology and enhancer/promoter function. Cell 162:900–910.  https://doi.org/10.1016/j.cell.2015.07.038 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Guo H, Cooper S, Friedman AD (2016) In vivo deletion of the Cebpa + 37 kb enhancer markedly reduces Cebpa mRNA in myeloid progenitors but not in non-hematopoietic tissues to impair granulopoiesis. PLoS ONE 11:e0150809.  https://doi.org/10.1371/journal.pone.0150809 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Guo MH, Nandakumar SK, Ulirsch JC, Zekavat SM, Buenrostro JD, Natarajan P, Salem RM, Chiarle R, Mitt M, Kals M, Parn K, Fischer K, Milani L, Magi R, Palta P, Gabriel SB, Metspalu A, Lander ES, Kathiresan S, Hirschhorn JN, Esko T, Sankaran VG (2017) Comprehensive population-based genome sequencing provides insight into hematopoietic regulatory mechanisms. Proc Natl Acad Sci USA 114:E327–E336.  https://doi.org/10.1073/pnas.1619052114 PubMedCrossRefGoogle Scholar
  40. Gupta RM, Hadaya J, Trehan A, Zekavat SM, Roselli C, Klarin D, Emdin CA, Hilvering CRE, Bianchi V, Mueller C, Khera AV, Ryan RJH, Engreitz JM, Issner R, Shoresh N, Epstein CB, de Laat W, Brown JD, Schnabel RB, Bernstein BE, Kathiresan S (2017) A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170:522–533e515.  https://doi.org/10.1016/j.cell.2017.06.049 PubMedPubMedCentralCrossRefGoogle Scholar
  41. Hanssen LLP, Kassouf MT, Oudelaar AM, Biggs D, Preece C, Downes DJ, Gosden M, Sharpe JA, Sloane-Stanley JA, Hughes JR, Davies B, Higgs DR (2017) Tissue-specific CTCF-cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat Cell Biol 19:952–961.  https://doi.org/10.1038/ncb3573 PubMedPubMedCentralCrossRefGoogle Scholar
  42. Hao N, Shearwin KE, Dodd IB (2017) Programmable DNA looping using engineered bivalent dCas9 complexes. Nat Commun 8:1628.  https://doi.org/10.1038/s41467-017-01873-x PubMedPubMedCentralCrossRefGoogle Scholar
  43. Heidari N, Phanstiel DH, He C, Grubert F, Jahanbani F, Kasowski M, Zhang MQ, Snyder MP (2014) Genome-wide map of regulatory interactions in the human genome. Genome Res 24:1905–1917.  https://doi.org/10.1101/gr.176586.114 PubMedPubMedCentralCrossRefGoogle Scholar
  44. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-Andre V, Sigova AA, Hoke HA, Young RA (2013) Super-enhancers in the control of cell identity and disease. Cell 155:934–947.  https://doi.org/10.1016/j.cell.2013.09.053 PubMedCrossRefGoogle Scholar
  45. Hnisz D, Day DS, Young RA (2016) Insulated neighborhoods: structural and functional units of mammalian gene control. Cell 167:1188–1200.  https://doi.org/10.1016/j.cell.2016.10.024 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hsu SC, Gilgenast TG, Bartman CR, Edwards CR, Stonestrom AJ, Huang P, Emerson DJ, Evans P, Werner MT, Keller CA, Giardine B, Hardison RC, Raj A, Phillips-Cremins JE, Blobel GA (2017) The BET protein BRD2 cooperates with CTCF to enforce transcriptional and architectural boundaries. Mol Cell 66:102–116e107.  https://doi.org/10.1016/j.molcel.2017.02.027 PubMedCrossRefPubMedCentralGoogle Scholar
  47. Hu T, Zhu X, Pi W, Yu M, Shi H, Tuan D (2017) Hypermethylated LTR retrotransposon exhibits enhancer activity. Epigenetics 12:226–237.  https://doi.org/10.1080/15592294.2017.1289300 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Huang J, Liu X, Li D, Shao Z, Cao H, Zhang Y, Trompouki E, Bowman TV, Zon LI, Yuan GC, Orkin SH, Xu J (2016) Dynamic control of enhancer repertoires drives lineage and stage-specific transcription during hematopoiesis. Dev Cell 36:9–23.  https://doi.org/10.1016/j.devcel.2015.12.014 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hwang YC, Zheng Q, Gregory BD, Wang LS (2013) High-throughput identification of long-range regulatory elements and their target promoters in the human genome. Nucleic Acids Res 41:4835–4846.  https://doi.org/10.1093/nar/gkt188 PubMedPubMedCentralCrossRefGoogle Scholar
  50. Ishihara K, Nakamoto M, Nakao M (2016) DNA methylation-independent removable insulator controls chromatin remodeling at the HOXA locus via retinoic acid signaling. Hum Mol Genet 25:5383–5394.  https://doi.org/10.1093/hmg/ddw354 PubMedGoogle Scholar
  51. Jagle S, Busch H, Freihen V, Beyes S, Schrempp M, Boerries M, Hecht A (2017) SNAIL1-mediated downregulation of FOXA proteins facilitates the inactivation of transcriptional enhancer elements at key epithelial genes in colorectal cancer cells. PLoS Genet 13:e1007109.  https://doi.org/10.1371/journal.pgen.1007109 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jensen KT, Floe L, Petersen TS, Huang J, Xu F, Bolund L, Luo Y, Lin L (2017) Chromatin accessibility and guide sequence secondary structure affect CRISPR-Cas9 gene editing efficiency. FEBS Lett 591:1892–1901.  https://doi.org/10.1002/1873-3468.12707 PubMedCrossRefGoogle Scholar
  53. Jin HJ, Jung S, DebRoy AR, Davuluri RV (2016) Identification and validation of regulatory SNPs that modulate transcription factor chromatin binding and gene expression in prostate cancer. Oncotarget 7:54616–54626.  https://doi.org/10.18632/oncotarget.10520 PubMedPubMedCentralGoogle Scholar
  54. Kaiser VB, Semple CA (2017) When TADs go bad: chromatin structure and nuclear organisation in human disease. F1000Res.  https://doi.org/10.12688/f1000research.10792.1 PubMedPubMedCentralGoogle Scholar
  55. Knight SC, Xie L, Deng W, Guglielmi B, Witkowsky LB, Bosanac L, Zhang ET, El Beheiry M, Masson JB, Dahan M, Liu Z, Doudna JA, Tjian R (2015) Dynamics of CRISPR-Cas9 genome interrogation in living cells. Science 350:823–826.  https://doi.org/10.1126/science.aac6572 PubMedCrossRefGoogle Scholar
  56. Komor AC, Badran AH, Liu DR (2017) CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell 168:20–36.  https://doi.org/10.1016/j.cell.2016.10.044 PubMedCrossRefGoogle Scholar
  57. Korkmaz G, Lopes R, Ugalde AP, Nevedomskaya E, Han R, Myacheva K, Zwart W, Elkon R, Agami R (2016) Functional genetic screens for enhancer elements in the human genome using CRISPR-Cas9. Nat Biotechnol 34:192–198.  https://doi.org/10.1038/nbt.3450 PubMedCrossRefGoogle Scholar
  58. Krivega I, Dean A (2017) LDB1-mediated enhancer looping can be established independent of mediator and cohesin. Nucleic Acids Res 45:8255–8268.  https://doi.org/10.1093/nar/gkx433 PubMedPubMedCentralCrossRefGoogle Scholar
  59. Lau CH, Suh Y (2017) Genome and epigenome editing in mechanistic studies of human aging and aging-related disease. Gerontology 63:103–117.  https://doi.org/10.1159/000452972 PubMedCrossRefGoogle Scholar
  60. Lee HK, Willi M, Wang C, Yang CM, Smith HE, Liu C, Hennighausen L (2017a) Functional assessment of CTCF sites at cytokine-sensing mammary enhancers using CRISPR/Cas9 gene editing in mice. Nucleic Acids Res 45:4606–4618.  https://doi.org/10.1093/nar/gkx185 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lee J, Krivega I, Dale RK, Dean A (2017b) The LDB1 complex co-opts CTCF for erythroid lineage-specific long-range enhancer interactions. Cell Rep 19:2490–2502.  https://doi.org/10.1016/j.celrep.2017.05.072 PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lessard S, Gatof ES, Beaudoin M, Schupp PG, Sher F, Ali A, Prehar S, Kurita R, Nakamura Y, Baena E, Ledoux J, Oceandy D, Bauer DE, Lettre G (2017) An erythroid-specific ATP2B4 enhancer mediates red blood cell hydration and malaria susceptibility. J Clin Invest 127:3065–3074.  https://doi.org/10.1172/JCI94378 PubMedPubMedCentralCrossRefGoogle Scholar
  63. Li Y, Rivera CM, Ishii H, Jin F, Selvaraj S, Lee AY, Dixon JR, Ren B (2014) CRISPR reveals a distal super-enhancer required for Sox2 expression in mouse embryonic stem cells. PLoS ONE 9:e114485.  https://doi.org/10.1371/journal.pone.0114485 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Li J, Shou J, Guo Y, Tang Y, Wu Y, Jia Z, Zhai Y, Chen Z, Xu Q, Wu Q (2015) Efficient inversions and duplications of mammalian regulatory DNA elements and gene clusters by CRISPR/Cas9. J Mol Cell Biol 7:284–298.  https://doi.org/10.1093/jmcb/mjv016 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Li P, Mitra S, Spolski R, Oh J, Liao W, Tang Z, Mo F, Li X, West EE, Gromer D, Lin JX, Liu C, Ruan Y, Leonard WJ (2017a) STAT5-mediated chromatin interactions in superenhancers activate IL-2 highly inducible genes: functional dissection of the Il2ra gene locus. Proc Natl Acad Sci USA 114:12111–12119.  https://doi.org/10.1073/pnas.1714019114 PubMedCrossRefGoogle Scholar
  66. Li P, Shi ML, Shen WL, Zhang Z, Xie DJ, Zhang XY, He C, Zhang Y, Zhao ZH (2017b) Coordinated regulation of IFITM1, 2 and 3 genes by an IFN-responsive enhancer through long-range chromatin interactions. Biochim Biophys Acta 1860:885–893.  https://doi.org/10.1016/j.bbagrm.2017.05.003 PubMedCrossRefGoogle Scholar
  67. Liu S, Liu Y, Zhang Q, Wu J, Liang J, Yu S, Wei GH, White KP, Wang X (2017a) Systematic identification of regulatory variants associated with cancer risk. Genome Biol 18:194.  https://doi.org/10.1186/s13059-017-1322-z PubMedPubMedCentralCrossRefGoogle Scholar
  68. Liu X, Zhang Y, Chen Y, Li M, Zhou F, Li K, Cao H, Ni M, Liu Y, Gu Z, Dickerson KE, Xie S, Hon GC, Xuan Z, Zhang MQ, Shao Z, Xu J (2017b) In situ capture of chromatin interactions by biotinylated dCas9. Cell 170:1028–1043e1019.  https://doi.org/10.1016/j.cell.2017.08.003 PubMedCrossRefGoogle Scholar
  69. Lo A, Qi L (2017) Genetic and epigenetic control of gene expression by CRISPR-Cas systems. F1000Res.  https://doi.org/10.12688/f1000research.11113.1 PubMedGoogle Scholar
  70. Lopez Rodriguez M, Kaminska D, Lappalainen K, Pihlajamaki J, Kaikkonen MU, Laakso M (2017) Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells. Genome Med 9:63.  https://doi.org/10.1186/s13073-017-0453-x PubMedPubMedCentralCrossRefGoogle Scholar
  71. Luo Z, Rhie SK, Lay FD, Farnham PJ (2017) A prostate cancer risk element functions as a repressive loop that regulates HOXA13. Cell Rep 21:1411–1417.  https://doi.org/10.1016/j.celrep.2017.10.048 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lupianez DG, Kraft K, Heinrich V, Krawitz P, Brancati F, Klopocki E, Horn D, Kayserili H, Opitz JM, Laxova R, Santos-Simarro F, Gilbert-Dussardier B, Wittler L, Borschiwer M, Haas SA, Osterwalder M, Franke M, Timmermann B, Hecht J, Spielmann M, Visel A, Mundlos S (2015) Disruptions of topological chromatin domains cause pathogenic rewiring of gene-enhancer interactions. Cell 161:1012–1025.  https://doi.org/10.1016/j.cell.2015.04.004 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lupianez DG, Spielmann M, Mundlos S (2016) Breaking TADs: how alterations of chromatin domains result in disease. Trends Genet 32:225–237.  https://doi.org/10.1016/j.tig.2016.01.003 PubMedCrossRefGoogle Scholar
  74. Ma H, Naseri A, Reyes-Gutierrez P, Wolfe SA, Zhang S, Pederson T (2015) Multicolor CRISPR labeling of chromosomal loci in human cells. Proc Natl Acad Sci USA 112:3002–3007.  https://doi.org/10.1073/pnas.1420024112 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ma H, Tu LC, Naseri A, Huisman M, Zhang S, Grunwald D, Pederson T (2016) Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34:528–530.  https://doi.org/10.1038/nbt.3526 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK (2013) CRISPR RNA-guided activation of endogenous human genes. Nat Methods 10:977–979.  https://doi.org/10.1038/nmeth.2598 PubMedPubMedCentralCrossRefGoogle Scholar
  77. Mao AP, Ishizuka IE, Kasal DN, Mandal M, Bendelac A (2017) A shared Runx1-bound Zbtb16 enhancer directs innate and innate-like lymphoid lineage development. Nat Commun 8:863.  https://doi.org/10.1038/s41467-017-00882-0 PubMedPubMedCentralCrossRefGoogle Scholar
  78. Maroofi N, Azarkeivan A, Banihashemi S, Mohammadparast S, Aghajanirefah A, Banan M (2017) An enhancer haplotype may influence BCL11A expression levels and the response to hydroxyurea in beta-thalassemia patients. Pharmacogenomics 18:995–967.  https://doi.org/10.2217/pgs-2017-0019 PubMedCrossRefGoogle Scholar
  79. McCaffrey J, Young E, Lassahn K, Sibert J, Pastor S, Riethman H, Xiao M (2017) High-throughput single-molecule telomere characterization. Genome Res 27:1904–1915.  https://doi.org/10.1101/gr.222422.117 PubMedCrossRefGoogle Scholar
  80. Metser G, Shin HY, Wang C, Yoo KH, Oh S, Villarino AV, O’Shea JJ, Kang K, Hennighausen L (2016) An autoregulatory enhancer controls mammary-specific STAT5 functions. Nucleic Acids Res 44:1052–1063.  https://doi.org/10.1093/nar/gkv999 PubMedCrossRefGoogle Scholar
  81. Mettananda S, Fisher CA, Hay D, Badat M, Quek L, Clark K, Hublitz P, Downes D, Kerry J, Gosden M, Telenius J, Sloane-Stanley JA, Faustino P, Coelho A, Doondeea J, Usukhbayar B, Sopp P, Sharpe JA, Hughes JR, Vyas P, Gibbons RJ, Higgs DR (2017) Editing an alpha-globin enhancer in primary human hematopoietic stem cells as a treatment for beta-thalassemia. Nat Commun 8:424.  https://doi.org/10.1038/s41467-017-00479-7 PubMedPubMedCentralCrossRefGoogle Scholar
  82. Meyer MB, Benkusky NA, Pike JW (2015) Selective distal enhancer control of the Mmp13 gene identified through clustered regularly interspaced short palindromic repeat (CRISPR) genomic deletions. J Biol Chem 290:11093–11107.  https://doi.org/10.1074/jbc.M115.648394 PubMedPubMedCentralCrossRefGoogle Scholar
  83. Montalbano A, Canver MC, Sanjana NE (2017) High-throughput approaches to pinpoint function within the noncoding genome. Mol Cell 68:44–59.  https://doi.org/10.1016/j.molcel.2017.09.017 PubMedCrossRefGoogle Scholar
  84. Moorthy SD, Davidson S, Shchuka VM, Singh G, Malek-Gilani N, Langroudi L, Martchenko A, So V, Macpherson NN, Mitchell JA (2017) Enhancers and super-enhancers have an equivalent regulatory role in embryonic stem cells through regulation of single or multiple genes. Genome Res 27:246–258.  https://doi.org/10.1101/gr.210930.116 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Morgan SL, Mariano NC, Bermudez A, Arruda NL, Wu F, Luo Y, Shankar G, Jia L, Chen H, Hu JF, Hoffman AR, Huang CC, Pitteri SJ, Wang KC (2017) Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 8:15993.  https://doi.org/10.1038/ncomms15993 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, Sakai A, Nakashima H, Hata K, Nakashima K, Hatada I (2016) Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol 34:1060–1065.  https://doi.org/10.1038/nbt.3658 PubMedCrossRefGoogle Scholar
  87. Mumbach MR, Satpathy AT, Boyle EA, Dai C, Gowen BG, Cho SW, Nguyen ML, Rubin AJ, Granja JM, Kazane KR, Wei Y, Nguyen T, Greenside PG, Corces MR, Tycko J, Simeonov DR, Suliman N, Li R, Xu J, Flynn RA, Kundaje A, Khavari PA, Marson A, Corn JE, Quertermous T, Greenleaf WJ, Chang HY (2017) Enhancer connectome in primary human cells identifies target genes of disease-associated DNA elements. Nat Genet 49:1602–1612.  https://doi.org/10.1038/ng.3963 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ong CT, Corces VG (2014) CTCF: an architectural protein bridging genome topology and function. Nat Rev Genet 15:234–246.  https://doi.org/10.1038/nrg3663 PubMedPubMedCentralCrossRefGoogle Scholar
  89. Padhy B, Hayat B, Nanda GG, Mohanty PP, Alone DP (2017) Pseudoexfoliation and Alzheimer’s associated CLU risk variant, rs2279590 lies within an enhancer element and regulates CLU, EPHX2 and PTK2B gene expression. Hum Mol Genet 26:4519–4529.  https://doi.org/10.1093/hmg/ddx329 PubMedCrossRefGoogle Scholar
  90. Placek K, Hu G, Cui K, Zhang D, Ding Y, Lee JE, Jang Y, Wang C, Konkel JE, Song J, Liu C, Ge K, Chen W, Zhao K (2017) MLL4 prepares the enhancer landscape for Foxp3 induction via chromatin looping. Nat Immunol 18:1035–1045.  https://doi.org/10.1038/ni.3812 PubMedPubMedCentralGoogle Scholar
  91. Pott S, Lieb JD (2015) What are super-enhancers? Nat Genet 47:8–12.  https://doi.org/10.1038/ng.3167 PubMedCrossRefGoogle Scholar
  92. Pulecio J, Verma N, Mejia-Ramirez E, Huangfu D, Raya A (2017) CRISPR/Cas9-based engineering of the epigenome. Cell Stem Cell 21:431–447.  https://doi.org/10.1016/j.stem.2017.09.006 PubMedCrossRefGoogle Scholar
  93. Qi LS, Larson MH, Gilbert LA, Doudna JA, Weissman JS, Arkin AP, Lim WA (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Qin P, Parlak M, Kuscu C, Bandaria J, Mir M, Szlachta K, Singh R, Darzacq X, Yildiz A, Adli M (2017) Live cell imaging of low- and non-repetitive chromosome loci using CRISPR-Cas9. Nat Commun 8:14725.  https://doi.org/10.1038/ncomms14725 PubMedPubMedCentralCrossRefGoogle Scholar
  95. Rajagopal N, Srinivasan S, Kooshesh K, Guo Y, Edwards MD, Banerjee B, Syed T, Emons BJ, Gifford DK, Sherwood RI (2016) High-throughput mapping of regulatory DNA. Nat Biotechnol 34:167–174.  https://doi.org/10.1038/nbt.3468 PubMedPubMedCentralCrossRefGoogle Scholar
  96. Rao SSP, Huang S-C, Glenn St Hilaire B, Engreitz JM, Perez EM, Kieffer-Kwon K-R, Sanborn AL, Johnstone SE, Bascom GD, Bochkov ID, Huang X, Shamim MS, Shin J, Turner D, Ye Z, Omer AD, Robinson JT, Schlick T, Bernstein BE, Casellas R, Lander ES, Aiden EL (2017) Cohesin loss eliminates all loop domains. Cell 171:305–320.e324.  https://doi.org/10.1016/j.cell.2017.09.026 PubMedCrossRefGoogle Scholar
  97. Ren G, Jin W, Cui K, Rodrigez J, Hu G, Zhang Z, Larson DR, Zhao K (2017) CTCF-mediated enhancer-promoter interaction is a critical regulator of cell-to-cell variation of gene expression. Mol Cell 67:1049–1058 e1046.  https://doi.org/10.1016/j.molcel.2017.08.026 PubMedCrossRefGoogle Scholar
  98. Rhee HS, Closser M, Guo Y, Bashkirova EV, Tan GC, Gifford DK, Wichterle H (2016) Expression of terminal effector genes in mammalian neurons is maintained by a dynamic relay of transient enhancers. Neuron 92:1252–1265.  https://doi.org/10.1016/j.neuron.2016.11.037 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Rivera CM, Ren B (2013) Mapping human epigenomes. Cell 155:39–55.  https://doi.org/10.1016/j.cell.2013.09.011 PubMedCrossRefGoogle Scholar
  100. Sanborn AL, Rao SS, Huang SC, Durand NC, Huntley MH, Jewett AI, Bochkov ID, Chinnappan D, Cutkosky A, Li J, Geeting KP, Gnirke A, Melnikov A, McKenna D, Stamenova EK, Lander ES, Aiden EL (2015) Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA 112:E6456–E6465.  https://doi.org/10.1073/pnas.1518552112 PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P, Joung J, Cheng C, Regev A, Zhang F (2016) High-resolution interrogation of functional elements in the noncoding genome. Science 353:1545–1549.  https://doi.org/10.1126/science.aaf7613 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Schmidt JC, Zaug AJ, Cech TR (2016) Live cell imaging reveals the dynamics of telomerase recruitment to telomeres. Cell 166:1188–1197 e1189.  https://doi.org/10.1016/j.cell.2016.07.033 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Schmidtmann E, Anton T, Rombaut P, Herzog F, Leonhardt H (2016) Determination of local chromatin composition by CasID. Nucleus 7:476–484.  https://doi.org/10.1080/19491034.2016.1239000 PubMedPubMedCentralCrossRefGoogle Scholar
  104. Seruggia D, Fernandez A, Cantero M, Pelczar P, Montoliu L (2015) Functional validation of mouse tyrosinase non-coding regulatory DNA elements by CRISPR-Cas9-mediated mutagenesis. Nucleic Acids Res 43:4855–4867.  https://doi.org/10.1093/nar/gkv375 PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sexton T, Cavalli G (2015) The role of chromosome domains in shaping the functional genome. Cell 160:1049–1059.  https://doi.org/10.1016/j.cell.2015.02.040 PubMedCrossRefGoogle Scholar
  106. Shao S, Zhang W, Hu H, Xue B, Qin J, Sun C, Sun Y, Wei W, Sun Y (2016) Long-term dual-color tracking of genomic loci by modified sgRNAs of the CRISPR/Cas9 system. Nucleic Acids Res 44:e86.  https://doi.org/10.1093/nar/gkw066 PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shao S, Chang L, Sun Y, Hou Y, Fan X, Sun Y (2017) Multiplexed sgRNA expression allows versatile single nonrepetitive DNA labeling and endogenous gene regulation. ACS Synth Biol.  https://doi.org/10.1021/acssynbio.7b00268 Google Scholar
  108. Simeonov DR, Gowen BG, Boontanrart M, Roth TL, Gagnon JD, Mumbach MR, Satpathy AT, Lee Y, Bray NL, Chan AY, Lituiev DS, Nguyen ML, Gate RE, Subramaniam M, Li Z, Woo JM, Mitros T, Ray GJ, Curie GL, Naddaf N, Chu JS, Ma H, Boyer E, Van Gool F, Huang H, Liu R, Tobin VR, Schumann K, Daly MJ, Farh KK, Ansel KM, Ye CJ, Greenleaf WJ, Anderson MS, Bluestone JA, Chang HY, Corn JE, Marson A (2017) Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature 549:111–115.  https://doi.org/10.1038/nature23875 PubMedPubMedCentralCrossRefGoogle Scholar
  109. Smemo S, Tena JJ, Kim KH, Gamazon ER, Sakabe NJ, Gomez-Marin C, Aneas I, Credidio FL, Sobreira DR, Wasserman NF, Lee JH, Puviindran V, Tam D, Shen M, Son JE, Vakili NA, Sung HK, Naranjo S, Acemel RD, Manzanares M, Nagy A, Cox NJ, Hui CC, Gomez-Skarmeta JL, Nobrega MA (2014) Obesity-associated variants within FTO form long-range functional connections with IRX3. Nature 507:371–375.  https://doi.org/10.1038/nature13138 PubMedPubMedCentralCrossRefGoogle Scholar
  110. Soldner F, Stelzer Y, Shivalila CS, Abraham BJ, Latourelle JC, Barrasa MI, Goldmann J, Myers RH, Young RA, Jaenisch R (2016) Parkinson-associated risk variant in distal enhancer of alpha-synuclein modulates target gene expression. Nature 533:95–99.  https://doi.org/10.1038/nature17939 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Suzuki HI, Young RA, Sharp PA (2017) Super-enhancer-mediated RNA processing revealed by integrative microRNA network analysis. Cell 168:1000–1014e1015.  https://doi.org/10.1016/j.cell.2017.02.015 PubMedPubMedCentralCrossRefGoogle Scholar
  112. Takei Y, Shah S, Harvey S, Qi LS, Cai L (2017) Multiplexed dynamic imaging of genomic loci by combined CRISPR imaging and DNA sequential FISH. Biophys J 112:1773–1776.  https://doi.org/10.1016/j.bpj.2017.03.024 PubMedCrossRefGoogle Scholar
  113. Tam KT, Chan PK, Zhang W, Law PP, Tian Z, Fung Chan GC, Philipsen S, Festenstein R, Tan-Un KC (2017) Identification of a novel distal regulatory element of the human Neuroglobin gene by the chromosome conformation capture approach. Nucleic Acids Res 45:115–126.  https://doi.org/10.1093/nar/gkw820 PubMedCrossRefGoogle Scholar
  114. Tanenbaum ME, Gilbert LA, Qi LS, Weissman JS, Vale RD (2014) A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159:635–646.  https://doi.org/10.1016/j.cell.2014.09.039 PubMedPubMedCentralCrossRefGoogle Scholar
  115. Thakore PI, D’Ippolito AM, Song L, Safi A, Shivakumar NK, Kabadi AM, Reddy TE, Crawford GE, Gersbach CA (2015) Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat Methods 12:1143–1149.  https://doi.org/10.1038/nmeth.3630 PubMedPubMedCentralCrossRefGoogle Scholar
  116. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY, Kagey MH, Rahl PB, Lee TI, Young RA (2013) Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:307–319.  https://doi.org/10.1016/j.cell.2013.03.035 PubMedPubMedCentralCrossRefGoogle Scholar
  117. Xi L, Schmidt JC, Zaug AJ, Ascarrunz DR, Cech TR (2015) A novel two-step genome editing strategy with CRISPR-Cas9 provides new insights into telomerase action and TERT gene expression. Genome Biol 16:231.  https://doi.org/10.1186/s13059-015-0791-1 PubMedPubMedCentralCrossRefGoogle Scholar
  118. Xia Q, Chesi A, Manduchi E, Johnston BT, Lu S, Leonard ME, Parlin UW, Rappaport EF, Huang P, Wells AD, Blobel GA, Johnson ME, Grant SF (2016) The type 2 diabetes presumed causal variant within TCF7L2 resides in an element that controls the expression of ACSL5. Diabetologia 59:2360–2368.  https://doi.org/10.1007/s00125-016-4077-2 PubMedCrossRefGoogle Scholar
  119. Yang R, Kerschner JL, Gosalia N, Neems D, Gorsic LK, Safi A, Crawford GE, Kosak ST, Leir SH, Harris A (2016) Differential contribution of cis-regulatory elements to higher order chromatin structure and expression of the CFTR locus. Nucleic Acids Res 44:3082–3094.  https://doi.org/10.1093/nar/gkv1358 PubMedCrossRefGoogle Scholar
  120. Yao L, Tak YG, Berman BP, Farnham PJ (2014) Functional annotation of colon cancer risk SNPs. Nat Commun 5:5114.  https://doi.org/10.1038/ncomms6114 PubMedPubMedCentralCrossRefGoogle Scholar
  121. Ye J, Tucker NR, Weng LC, Clauss S, Lubitz SA, Ellinor PT (2016) A functional variant associated with atrial fibrillation regulates PITX2c expression through TFAP2a. Am J Hum Genet 99:1281–1291.  https://doi.org/10.1016/j.ajhg.2016.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Zhang F, Lupski JR (2015) Non-coding genetic variants in human disease. Hum Mol Genet 24:R102–R110.  https://doi.org/10.1093/hmg/ddv259 PubMedPubMedCentralCrossRefGoogle Scholar
  123. Zhang X, Choi PS, Francis JM, Imielinski M, Watanabe H, Cherniack AD, Meyerson M (2016) Identification of focally amplified lineage-specific super-enhancers in human epithelial cancers. Nat Genet 48:176–182.  https://doi.org/10.1038/ng.3470 PubMedCrossRefGoogle Scholar
  124. Zhang X, Choi PS, Francis JM, Gao GF, Campbell JD, Ramachandran A, Mitsuishi Y, Ha G, Shih J, Vazquez F, Tsherniak A, Taylor AM, Zhou J, Wu Z, Berger AC, Giannakis M, Hahn WC, Cherniack AD, Meyerson M (2017) Somatic super-enhancer duplications and hotspot mutations lead to oncogenic activation of the KLF5 transcription factor. Cancer Discov.  https://doi.org/10.1158/2159-8290.CD-17-0532 Google Scholar
  125. Zhou HY, Katsman Y, Dhaliwal NK, Davidson S, Macpherson NN, Sakthidevi M, Collura F, Mitchell JA (2014) A Sox2 distal enhancer cluster regulates embryonic stem cell differentiation potential. Genes Dev 28:2699–2711.  https://doi.org/10.1101/gad.248526.114 PubMedPubMedCentralCrossRefGoogle Scholar
  126. Zhou Y, Wang P, Tian F, Gao G, Huang L, Wei W, Xie XS (2017) Painting a specific chromosome with CRISPR/Cas9 for live-cell imaging. Cell Res 27:298–301.  https://doi.org/10.1038/cr.2017.9 PubMedPubMedCentralCrossRefGoogle Scholar
  127. Zhu Y, Tazearslan C, Suh Y (2017) Challenges and progress in interpretation of non-coding genetic variants associated with human disease. Exp Biol Med 242:1325–1334.  https://doi.org/10.1177/1535370217713750 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Mechanical and Biomedical EngineeringCity University of Hong KongHong KongChina
  2. 2.Department of GeneticsAlbert Einstein College of MedicineBronxUSA
  3. 3.Department of Ophthalmology and Visual SciencesAlbert Einstein College of MedicineBronxUSA
  4. 4.Department of MedicineAlbert Einstein College of MedicineBronxUSA
  5. 5.Institute for Aging ResearchAlbert Einstein College of MedicineBronxUSA

Personalised recommendations