Skip to main content
Log in

Differences in bone structure and unloading-induced bone loss between C57BL/6N and C57BL/6J mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The C57BL/6 mouse, the most frequently utilized animal model in biomedical research, is in use as several substrains, all of which differ by a small array of genomic differences. Two of these substrains, C57BL/6J (B6J) and C57BL/6N (B6N), are commonly used but it is unclear how phenotypically similar or different they are. Here, we tested whether adolescent B6N mice have a bone phenotype and respond to the loss of weightbearing differently than B6J. At 9 weeks of age, normally ambulating B6N had lower trabecular bone volume fraction but greater bone formation rates and osteoblast surfaces than corresponding B6J. At 11 weeks of age, differences in trabecular indices persisted between the substrains but differences in cellular activity had ceased. Cortical bone indices were largely similar between the two substrains. Hindlimb unloading (HLU) induced similar degeneration of trabecular architecture and cellular activity in both substrains when comparing 11-week-old HLU mice to 11-week-old controls. However, unloaded B6N mice had smaller cortices than B6J. When comparing HLU to 9 weeks baseline control mice, deterioration in trabecular separation, osteoblast indices, and endocortical variables was significantly greater in B6N than B6J. These data indicate specific developmental differences in bone formation and morphology between B6N and B6J mice, giving rise to a differential response to mechanical unloading that may be modulated, in part, by the genes Herc2, Myo18b, and Acan. Our results emphasize that these substrains cannot be used interchangeably at least for investigations in which the phenotypic makeup and its response to extraneous stimuli are of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alfredson H, Nordstrom P, Lorentzon R (1996) Total and regional bone mass in female soccer players. Calcif Tissue Int 59:438–442

    Article  CAS  PubMed  Google Scholar 

  • Amblard D, Lafage-Proust MH, Laib A, Thomas T, Rüegsegger P, Alexandre C, Vico L (2003) Tail suspension induces bone loss in skeletally mature mice in the C57BL/6J strain but not in the C3H/HeJ strain. J Bone Miner Res 18:561–569

    Article  PubMed  Google Scholar 

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bayat A, Barton A, Ollier WE (2004) Dissection of complex genetic disease: implications for orthopaedics. Clin Orthop Relat Res 419:297–305

    Article  Google Scholar 

  • Beamer W, Donahue L, Rosen C, Baylink D (1996) Genetic variability in adult bone density among inbred strains of mice. Bone 18:397–403

    Article  CAS  PubMed  Google Scholar 

  • Beckwith J, Cong Y, Sundberg JP, Elson CO, Leiter EH (2005) Cdcs1, a major colitogenic locus in mice, regulates innate and adaptive immune response to enteric bacterial antigens. Gastroenterol 129:1473–1484

    Article  CAS  Google Scholar 

  • Bekker-Jensen S, Danielsen JR, Fugger K, Gromova I, Nerstedt A, Lukas C, Bartek J, Lukas J, Mailand N (2009) HERC2 coordinates ubiquitin-dependent assembly of DNA repair factors on damaged chromosomes. Nat Cell Biol 12:80–86

    Article  PubMed  Google Scholar 

  • Burr DB (1997) Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res 12:1547–1551

    Article  CAS  PubMed  Google Scholar 

  • Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL (2010) Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 464:999–1005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eastell R, Calvo MS, Burritt MF, Offord KP, Russell R, Riggs BL (1992) Abnormalities in circadian patterns of bone resorption and renal calcium conservation in type I osteoporosis. J Clin Endocrinol Metab 74:487–494

    CAS  PubMed  Google Scholar 

  • Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 20:788–804

    Article  CAS  PubMed  Google Scholar 

  • Frazer KA, Murray SS, Schork NJ, Topol EJ (2009) Human genetic variation and its contribution to complex traits. Nat Rev Genet 10:241–251

    Article  CAS  PubMed  Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, Bouxsein ML (2007) Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res 22:1197–1207

    Article  PubMed  Google Scholar 

  • Globus RK, Morey-Holton E (2016) Hindlimb unloading: rodent analog for microgravity. J Appl Physiol 120:1196–1206

    Article  CAS  PubMed  Google Scholar 

  • Green DE, Adler BJ, Chan ME, Rubin CT (2012) Devastation of adult stem cell pools by irradiation precedes collapse of trabecular bone quality and quantity. J Bone Miner Res 27:749–759

    Article  PubMed  Google Scholar 

  • Grubb SC, Bult CJ, Bogue MA (2014) Mouse phenome database. Nucleic Acids Res 42:D825-D834

    Article  Google Scholar 

  • Haan J, Terwindt GM, Ferrari MD (1997) Genetics of migraine. Neurol Clin 15:43–60

    Article  CAS  PubMed  Google Scholar 

  • Hansen MF, Cavenee WEEK (1987) Genetics of cancer predisposition. Cancer Res 47:5518–5527

    CAS  PubMed  Google Scholar 

  • Judex S, Garman R, Squire M, Busa B, Donahue LR, Rubin C (2004a) Genetically linked site-specificity of disuse osteoporosis. J Bone Miner Res 19:607–613

    Article  PubMed  Google Scholar 

  • Judex S, Garman R, Squire M, Donahue LR, Rubin C (2004b) Genetically based influences on the site-specific regulation of trabecular and cortical bone morphology. J Bone Miner Res 19:600–606

    Article  PubMed  Google Scholar 

  • Judex S, Zhang W, Donahue LR, Ozcivici E (2013) Genetic loci that control the loss and regain of trabecular bone during unloading and reambulation. J Bone Miner Res 28:1537–1549

    Article  CAS  PubMed  Google Scholar 

  • Kamal M, Shaaban AM, Zhang L, Walker C, Gray S, Thakker N, Toomes C, Speirs V, Bell SM (2010) Loss of CSMD1 expression is associated with high tumour grade and poor survival in invasive ductal breast carcinoma. Breast Cancer Res Treat 121:555–563

    Article  CAS  PubMed  Google Scholar 

  • Kesavan C, Mohan S, Srivastava AK, Kapoor S, Wergedal JE, Yu H, Baylink DJ (2006) Identification of genetic loci that regulate bone adaptive response to mechanical loading in C57BL/6J and C3H/HeJ mice intercross. Bone 39:634–643

    Article  CAS  PubMed  Google Scholar 

  • Kiselycznyk C, Holmes A (2011) All (C57BL/6) mice are not created equal. Front Neurosci 5:10

    Article  PubMed  PubMed Central  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9:1

    Article  Google Scholar 

  • Le Goff C, Somerville RP, Kesteloot F, Powell K, Birk DE, Colige AC, Apte SS (2006) Regulation of procollagen amino-propeptide processing during mouse embryogenesis by specialization of homologous ADAMTS proteases: insights on collagen biosynthesis and dermatosparaxis. Development 133:1587–1596

    Article  PubMed  Google Scholar 

  • Lehman AL, Nakatsu Y, Ching A, Bronson RT, Oakey RJ, Keiper-Hrynko N, Finger JN, Durham-Pierre D, Horton DB, Newton JM (1998) A very large protein with diverse functional motifs is deficient in rjs (runty, jerky, sterile) mice. Proc Natl Acad Sci 95:9436–9441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li B, Sankaran JS, Judex S (2016) Trabecular and cortical bone of growing C3H mice is highly responsive to the removal of weightbearing. PLoS ONE 11:e0156222

    Article  PubMed  PubMed Central  Google Scholar 

  • Lloyd K, Franklin C, Lutz C, Magnuson T (2015) Reproducibility: use mouse biobanks or lose them. Nature 522:151–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lublinsky S, Ozcivici E, Judex S (2007) An automated algorithm to detect the trabecular-cortical bone interface in micro-computed tomographic images. Calcif Tissue Int 81:285–293

    Article  CAS  PubMed  Google Scholar 

  • Mähler M, Leiter EH (2002) Genetic and environmental context determines the course of colitis developing in IL–10-deficient mice. Inflamm Bowel Dis 8:347–355

    Article  PubMed  Google Scholar 

  • Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M (2010) Genetic susceptibility to breast cancer. Mol Oncol 4:174–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Megraud F (1996) Advantages and disadvantages of current diagnostic tests for the detection of Helicobacter pylori. Scand J Gastroenterol 31:57–62

    Article  Google Scholar 

  • Nam H-S, Shin M-H, Zmuda J, Leung P, Barrett-Connor E, Orwoll E, Cauley J, Group OFiMR (2010) Race/ethnic differences in bone mineral densities in older men. Osteoporos Int 21, 2115–2123

    Article  PubMed  PubMed Central  Google Scholar 

  • Nicholson A, Reifsnyder PC, Malcolm RD, Lucas CA, MacGregor GR, Zhang W, Leiter EH (2010) Diet-induced obesity in two C57BL/6 substrains with intact or mutant nicotinamide nucleotide transhydrogenase (Nnt) gene. Obesity 18:1902–1905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noh T, Gabet Y, Cogan J, Shi Y, Tank A, Sasaki T, Criswell B, Dixon A, Lee C, Tam J (2009) Lef1 haploinsufficient mice display a low turnover and low bone mass phenotype in a gender-and age-specific manner. PLoS ONE 4:e5438

    Article  PubMed  PubMed Central  Google Scholar 

  • Otter A, Jeffrey M, Scholes S, Helmick B, Wilesmith J, Trees A (1997) Comparison of histology with maternal and fetal serology for the diagnosis of abortion due to bovine neosporosis. Vet Rec 141:487–489

    Article  CAS  PubMed  Google Scholar 

  • Plomin R, Haworth CM, Davis OS (2009) Common disorders are quantitative traits. Nat Rev Genet 10:872–878

    Article  CAS  PubMed  Google Scholar 

  • Poliachik SL, Threet D, Srinivasan S, Gross TS (2008) 32 wk old C3H/HeJ mice actively respond to mechanical loading. Bone 42:653–659

    Article  PubMed  PubMed Central  Google Scholar 

  • Romeo S, Kozlitina J, Xing C, Pertsemlidis A, Cox D, Pennacchio LA, Boerwinkle E, Cohen JC, Hobbs HH (2008) Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet 40:1461–1465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosen CJ, Ackert-Bicknell C, Rodriguez JP, Pino AM (2009) Marrow fat and the bone microenvironment: developmental, functional, and pathological implications. Critical Rev™ Eukaryot Gene Expr 19:109–124

    Article  CAS  Google Scholar 

  • Salamon M, Millino C, Raffaello A, Mongillo M, Sandri C, Bean C, Negrisolo E, Pallavicini A, Valle G, Zaccolo M (2003) Human MYO18B, a novel unconventional myosin heavy chain expressed in striated muscles moves into the myonuclei upon differentiation. J Mol Biol 326:137–149

    Article  CAS  PubMed  Google Scholar 

  • Sankaran JS, Li B, Donahue LR, Judex S (2015) Modulation of unloading-induced bone loss in mice with altered ERK signaling. Mamm Genome 27:1–15

    Google Scholar 

  • Scheffner M, Kumar S (2014) Mammalian HECT ubiquitin-protein ligases: biological and pathophysiological aspects. Biochim Biophys Acta Mol Cell Res 1843:61–74

    Article  CAS  Google Scholar 

  • Schwartz RS (2001) Racial profiling in medical research. N Engl J Med 344:1392–1393

    Article  CAS  PubMed  Google Scholar 

  • Shi Y, Massagué J (2003) Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell 113:685–700

    Article  CAS  PubMed  Google Scholar 

  • Sibonga J, Zhang M, Evans G, Westerlind K, Cavolina J, Morey-Holton E, Turner R (2000) Effects of spaceflight and simulated weightlessness on longitudinal bone growth. Bone 27:535–540

    Article  CAS  PubMed  Google Scholar 

  • Simon DN, Wilson KL (2011) The nucleoskeleton as a genome-associated dynamic’network of networks’. Nat Rev Mol Cell Biol 12:695–708

    Article  CAS  PubMed  Google Scholar 

  • Simon MM, Greenaway S, White JK, Fuchs H, Gailus-Durner V, Wells S, Sorg T, Wong K, Bedu E, Cartwright EJ (2013) A comparative phenotypic and genomic analysis of C57BL/6J and C57BL/6N mouse strains. Genome Biol 14:R82

    Article  PubMed  PubMed Central  Google Scholar 

  • Squire M, Donahue LR, Rubin C, Judex S (2004) Genetic variations that regulate bone morphology in the male mouse skeleton do not define its susceptibility to mechanical unloading. Bone 35:1353–1360

    Article  PubMed  Google Scholar 

  • Squire M, Brazin A, Keng Y, Judex S (2008) Baseline bone morphometry and cellular activity modulate the degree of bone loss in the appendicular skeleton during disuse. Bone 42:341–349

    Article  PubMed  Google Scholar 

  • van Amerongen R, Berns A (2006) Knockout mouse models to study Wnt signal transduction. Trends Genet 22:678–689

    Article  PubMed  Google Scholar 

  • Vang T, Congia M, Macis MD, Musumeci L, Orrú V, Zavattari P, Nika K, Tautz L, Taskén K, Cucca F (2005) Autoimmune-associated lymphoid tyrosine phosphatase is a gain-of-function variant. Nat Genet 37:1317–1319

    Article  CAS  PubMed  Google Scholar 

  • Visscher PM, Hill WG, Wray NR (2008) Heritability in the genomics era—concepts and misconceptions. Nat Rev Genet 9:255–266

    Article  CAS  PubMed  Google Scholar 

  • Walkowicz M, Ji Y, Ren X, Horsthemke B, Russell LB, Johnson D, Rinchik EM, Nicholls RD, Stubbs L (1999) Molecular characterization of radiation-and chemically induced mutations associated with neuromuscular tremors, runting, juvenile lethality, and sperm defects in jdf2 mice. Mamm Genome 10:870–878

    Article  CAS  PubMed  Google Scholar 

  • Wilson JF, Weale ME, Smith AC, Gratrix F, Fletcher B, Thomas MG, Bradman N, Goldstein DB (2001) Population genetic structure of variable drug response. Nat Genet 29:265–269

    Article  CAS  PubMed  Google Scholar 

  • Witherspoon DJ, Wooding S, Rogers AR, Marchani EE, Watkins WS, Batzer MA, Jorde LB (2007) Genetic similarities within and between human populations. Genetics 176:351–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong M, Lawton T, Goetinck P, Kuhn J, Goldstein S, Bonadio J (1992) Aggrecan core protein is expressed in membranous bone of the chick embryo. Molecular and biomechanical studies of normal and nanomelia embryos. J Biol Chem 267:5592–5598

    CAS  PubMed  Google Scholar 

  • Yokota T, Yoshimoto M, Akiyama F, Sakamoto G, Kasumi F, Nakamura Y, Emi M (1999) Localization of a tumor suppressor gene associated with the progression of human breast carcinoma within a 1-cm interval of 8p22–p23. 1. Cancer 85:447–452

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful for financial support from NASA (NNX12AL25G). The authors thank Leah Rae Donahue for providing the mice and Alyssa Tuthill, Tee Pamon, and Sherin Kuriakose for technical assistance. This work was in part presented in the doctoral dissertation of Jeyantt Sankaran, the first author of this manuscript (Sankaran JS, 2016, Identification of Genes that Modulate Bone Loss during Mechanical Unloading. State University of New York at Stony Brook).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Judex.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on the Welfare of Animals

All procedures were reviewed and approved by Stony Brook University’s Institutional Animal Care and Use Committee (IACUC).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankaran, J.S., Varshney, M. & Judex, S. Differences in bone structure and unloading-induced bone loss between C57BL/6N and C57BL/6J mice. Mamm Genome 28, 476–486 (2017). https://doi.org/10.1007/s00335-017-9717-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-017-9717-4

Keywords

Navigation