Abstract
The Valdostana goat is an alpine breed, raised only in the northern Italian region of the Aosta Valley. This breed’s main purpose is to produce milk and meat, but is peculiar for its involvement in the “Batailles de Chèvres,” a recent tradition of non-cruel fight tournaments. At both the genetic and genomic levels, only a very limited number of studies have been performed with this breed and there are no studies about the genomic signatures left by selection. In this work, 24 unrelated Valdostana animals were screened for runs of homozygosity to identify highly homozygous regions. Then, six different approaches (ROH comparison, Fst single SNPs and windows based, Bayesian, Rsb, and XP-EHH) were applied comparing the Valdostana dataset with 14 other Italian goat breeds to confirm regions that were different among the comparisons. A total of three regions of selection that were also unique among the Valdostana were identified and located on chromosomes 1, 7, and 12 and contained 144 genes. Enrichment analyses detected genes such as cytokines and lymphocyte/leukocyte proliferation genes involved in the regulation of the immune system. A genetic link between an aggressive challenge, cytokines, and immunity has been hypothesized in many studies both in humans and in other species. Possible hypotheses associated with the signals of selection detected could be therefore related to immune-related factors as well as with the peculiar battle competition, or other breed-specific traits, and provided insights for further investigation of these unique regions, for the understanding and safeguard of the Valdostana breed.
Similar content being viewed by others
References
Akey JM, Ruhe AL, Akey DT, et al (2010) Tracking footprints of artificial selection in the dog genome. Proc Natl Acad Sci 107:1160–1165. doi:10.1073/pnas.0909918107
Andersson L, Georges M (2004) Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet 5:202–212. doi:10.1038/nrg1294
Association Comité Régional Batailles des Chèvres (2016) Batailles de Chevre. http://bataillesdeschevres.it/?page_id=21
ASSONAPA (2014) Valdostana breed standard
ASSONAPA Associazione Nazionale della Pastorizia. http://www.assonapa.com/. Accessed 18 Dec 2015
Becker D, Otto M, Ammann P et al (2015) The brown coat colour of Coppernecked goats is Asso. with a non-synonymous variant at the TYRP1 locus on chromosome 8. Anim Genet 46:50–54. doi:10.1111/age.12240
Bertolini F, Gandolfi B, Kim ES et al (2016) Evidence of selection signatures that shape the Persian cat breed. Mamm Genome 27:144–155. doi:10.1007/s00335-016-9623-1
Bhatt S, Siegel A (2006) Potentiating role of interleukin 2 (IL-2) receptors in the midbrain periaqueductal gray (PAG) upon defensive rage behavior in the cat: Role of neurokinin NK1 receptors. Behav Brain Res 167:251–260. doi:10.1016/j.bbr.2005.09.011
Brito LF, Jafarikia M, Grossi DA et al (2015) Characterization of linkage disequilibrium, consistency of gametic phase and admixture in Australian and Canadian goats. BMC Genet 16:67. doi:10.1186/s12863-015-0220-1
Browning BL (2011) Beagle 3.3.2. 1–30
Browning SR, Browning BL (2007) Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am J Hum Genet 81:1084–1097. doi:10.1086/521987
Browning BL, Browning SR (2008) A unified approach to genotype imputation and haplotype-phase inference for large data sets of trios and unrelated individuals. Am J Hum Genet 84:210–223. doi:10.1016/j.ajhg.2009.01.005
Chang CC, Chow CC, Tellier LC, et al (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience 4:7. doi:10.1186/s13742-015-0047-8
Chen EY, Tan CM, Kou Y et al (2013) Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool. BMC Bioinform 14:128. doi:10.1186/1471-2105-14-128
Colli L, Lancioni H, Cardinali I et al (2015) Whole mitochondrial genomes unveil the impact of domestication on goat matrilineal variability. BMC Genom 16:1115. doi:10.1186/s12864-015-2342-2
Colussi S, Sacchi P, Cristoferi I, et al (2008) Genetic variability of the PRNP gene in Piemonte region goat breeds and in Valdostana breed. Large Anim Rev 14:11–14
Council of Europe (1986) European convention for the protection of vertebrate animals used for experimental and other scientific purposes CETS 123. In: Strasbourg. http://www.coe.int/en/web/conventions/full-list/-/conventions/treaty/123. Accessed 18 Dec 2015
de Simoni Gouveia JJ, da Silva MVGB, Paiva SR, de Oliveira SMP (2014) Identification of selection signatures in livestock species. Genet Mol Biol 37:330–342. doi:10.1590/S1415-47572014000300004
Dekkers J (2012) Application of genomics tools to animal BREEDING. Curr Genom 13:207–212. doi:10.2174/138920212800543057
Dong Y, Xie M, Jiang Y et al (2013) Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol 31:135–141. doi:10.1038/nbt.2478
Druet T, Ahariz N, Cambisano N et al (2014) Selection in action†¯: dissecting the molecular underpinnings of the increasing muscle mass of Belgian blue cattle. BMC Genomics 15:1–12. doi:10.1186/1471-2164-15-796
Du XY, Womack JE, Owens KE, et al (2012) A whole-genome radiation hybrid panel for goat. Small Rumin Res 105:114–116. doi:10.1016/j.smallrumres.2011.11.023
FAO (2013) Status and trends of animal genetic resources – 2012
Fernando RL, Garrick DJ (2009) GenSel–user manual for a portfolio of genomic selection related analyses. Animal Breeding and Genetics Iowa State University Ames. http://www.biomedcentral.com/content/supplementary/1471-2105-12-186-S1.PDF
Fleming DS, Koltes JE, Markey AD et al (2016) Genomic analysis of Ugandan and Rwandan chicken ecotypes using a 600 k genotyping array. BMC Genomics 17:407. doi:10.1186/s12864-016-2711-5
Gautier M, Vitalis R (2012) Rehh An R package to detect footprints of selection in genome-wide SNP data from haplotype structure. Bioinformatics 28:1176–1177. doi:10.1093/bioinformatics/bts115
Gossner AG, Hopkins J (2015) The effect of PrP(Sc) accumulation on inflammatory gene expression within sheep peripheral lymphoid tissue. Vet Microbiol 181:204–211. doi:10.1016/j.vetmic.2015.10.013
Karlsson EK, Baranowska I, Wade CM et al (2007) Efficient mapping of mendelian traits in dogs through genome-wide association. Nat Genet 39:1321–1328. doi:10.1038/ng.2007.10
Kijas JW, Lenstra JA, Hayes B et al (2012) Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol 10:e1001258. doi:10.1371/journal.pbio.1001258
Kijas JW, Ortiz JS, McCulloch R et al (2013) Genetic diversity and investigation of polledness in divergent goat populations using 52 088 SNPs. Anim Genet 44:325–335. doi:10.1111/age.12011
Kim E-S, Elbeltagy AR, Aboul-Naga AM, et al (2015) Multiple genomic signatures of selection in goats and sheep indigenous to a hot arid environment. Heredity (Edinb). doi:10.1038/hdy.2015.94
King GD, Turner RS (2004) Adaptor protein interactions: Modulators of amyloid precursor protein metabolism and Alzheimer’s disease risk? Exp Neurol 185:208–219. doi:10.1016/j.expneurol.2003.10.011
Kuleshov M V., Jones MR, Rouillard AD, et al (2016) Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Res. doi:10.1093/nar/gkw377
Lashmar S, Visser C, Van Marle-Köster E (2015) Validation of the 50k Illumina goat SNP chip in the South African Angora goat. S Afr J Anim Sci 45:56. doi:10.4314/sajas.v45i1.7
Lyons E, Freeling M (2008) How to usefully compare homologous plant genes and chromosomes as DNA sequences. Plant J 53:661–673. doi:10.1111/j.1365-313X.2007.03326.x
Matukumalli LK, Lawley CT, Schnabel RD et al (2009) Development and characterization of a high density SNP genotyping assay for cattle. PLoS One 4:e5350. doi:10.1371/journal.pone.0005350
Meuwissen T, Hayes B, Goddard M (2013) Accelerating improvement of livestock with genomic selection. Annu Rev Anim Biosci 1:221–237. doi:10.1146/annurev-animal-031412-103705
Mucha S, Mrode R, MacLaren-Lee I et al (2015) Estimation of genomic breeding values for milk yield in UK dairy goats. J Dairy Sci 98:8201–8208. doi:10.3168/jds.2015-9682
NEXTGEN (2009) NEXTGEN
Nicolazzi EL, Biffani S, Biscarini F et al (2015) Software solutions for the livestock genomics SNP array revolution. Anim Genet 46:343–353. doi:10.1111/age.12295
Nicoloso L, Bomba L, Colli L et al (2015) Genetic diversity of Italian goat breeds assessed with a medium-density SNP chip. Genet Sel Evol. doi:10.1186/s12711-015-0140-6
Nordström EK, Luhr KM, Iba C, Kristensson K (2005) Inhibitors of the mitogen-activated protein kinase kinase 1 / 2 signaling pathway clear prion-infected cells from PrP Sc. Neurobiol Dis 25:8451–8456. doi:10.1523/JNEUROSCI.2349-05.2005
Onteru SK, Gorbach DM, Young JM et al (2013) Whole genome association studies of residual feed intake and related traits in the pig. PLoS One. doi:10.1371/journal.pone.0061756
Petitto JM, Lysle DT, Gariepy J-L, Lewis MH (1994) Association of genetic differences in social behavior and cellular immune responsiveness: effects of social experience. Brain, behav immun 8:111–122. doi:10.1006/brbi.1994.1011
Porto-Neto LR, Lee SH, Lee HK, Gondro C (2013) Detection of signatures of selection using Fst. Methods Mol Biol 1019:423–436. doi:10.1007/978-1-62703-447-0_19
Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842. doi:10.1093/bioinformatics/btq033
Reber I, Keller I, Becker D et al (2015) Wattles in goats are associated with the FMN1/GREM1 region on chromosome 10. Anim Genet 46:316–320. doi:10.1111/age.12279
Sabeti PC, Varilly P, Fry B, et al (2007) Genome-wide detection and characterization of positive selection in human populations. Nature 449:913–918. doi:10.1038/nature06250.Genome-wide
Sartori C, Mantovani R (2010) Genetics of fighting ability in cattle using data from the traditional battle contest of the Valdostana breed. J Anim Sci 88:3206–3213. doi:10.2527/jas.2010-2899
Szpiech ZA, Hernandez RD (2014) Selscan: an efficient multithreaded program to perform EHH-based scans for positive selection. Mol Biol Evol 31:2824–2827. doi:10.1093/molbev/msu211
Talenti A, Nicolazzi EL, Chessa S, et al (2016) A method for single nucleotide polymorphism selection for parentage assessment in goats. J Dairy Sci 3646–3653. doi:10.3168/jds.2015-10077
Tanahashi H, Tabira T (1999) X11L2, a new member of the X11 protein family, interacts with Alzheimer’s β-amyloid precursor protein. Biochem Biophys Res Commun 255:663–667. doi:10.1006/bbrc.1999.0265
Tang K, Thornton KR, Stoneking M (2007) A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biol 5:1587–1602. doi:10.1371/journal.pbio.0050171
Tosser-Klopp G, Bardou P, Cabau C, et al (2012) Goat genome assembly, availability of an international 50 K SNP chip and RH panel: an update of the international goat genome consortium projects. In: Plant and Animal Genome XX Conference (January 14–18, 2012)
Tosser-Klopp G, Bardou P, Bouchez O et al (2014) Design and characterization of a 52 K SNP chip for goats. PLoS One 9:e86227
Zalcman SS, Siegel A (2006) The neurobiology of aggression and rage: role of cytokines. Brain Behav Immun 20:507–514. doi:10.1016/j.bbi.2006.05.002
Zhao X, Onteru SK, Dittmer KE, et al (2012) A missense mutation in AGTPBP1 was identified in sheep with a lower motor neuron disease. Heredity (Edinb) 109:156–162. doi:10.1038/hdy.2012.23
Acknowledgements
We thank the goat breeders for providing the samples. Financial support was provided in part by State of Iowa funds, Iowa State University, and the Ensminger International Animal Agriculture fund. This work was partially funded by the Italian Ministry of Agriculture (grant INNOVAGEN). This study makes use of data generated by the NextGen Consortium. The European Union’s Seventh Framework Programme (FP7/2010–2014) provided funding for the project under grant agreement no. 244356 - “NextGen.”
Author information
Authors and Affiliations
Consortia
Corresponding author
Additional information
Talenti Andrea and Francesca Bertolini have contributed equally to the work.
An erratum to this article is available at http://dx.doi.org/10.1007/s00335-017-9685-8.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Talenti, A., Bertolini, F., Pagnacco, G. et al. The Valdostana goat: a genome-wide investigation of the distinctiveness of its selective sweep regions. Mamm Genome 28, 114–128 (2017). https://doi.org/10.1007/s00335-017-9678-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-017-9678-7