Skip to main content

Advertisement

Log in

Complex genetics architecture contributes to Salmonella resistance in AcB60 mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Human infection with Salmonella is of global public health concern. In low- and middle-income countries, Salmonella infection is a major source of disease in terms of both mortality and morbidity, while in high-income nations, the pathogen is an ongoing threat to food security. The outcome of infection with Salmonella enterica serovar Typhimurium (Salmonella Typhimurium) in mouse models is dependent upon a coordinated and complex immune response. A panel of recombinant congenic strains (RCS) derived from the reciprocal double backcross of A/J and C57BL/6J mice has been screened for their susceptibility to Salmonella infection, and the RCS AcB60 was identified to be the most resistant strain to Salmonella infection, more resistant than the parental strain A/J. These mice are known to carry resistant alleles at three well-defined Salmonella susceptibility loci, Slc11a1 Ity (solute carrier family 11 member 1; Immunity to Typhimurium locus), Pklr Ity4 (pyruvate kinase liver and red blood cell; Ity4 locus), and Ity5. In the current study, we used interval mapping to validate a locus on Chr 15, named Ity8, linked to Salmonella resistance in AcB60 mice. Global gene expression analysis during infection identified AcB60-specific expression of genes involved in Ccr7 signaling, including downstream effector Mapk11 (mitogen-activated protein kinase 11), located within the Ity8 interval, and representing a potential positional candidate gene. An additional region on Chr 18 of C57BL/6J descent was shown to be associated with increase resistance in AcB60. These observations provide an opportunity to achieve new insight into the complex genetics of resistance to Salmonella infection in the context of mouse models of human infection with Salmonella Typhimurium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allaire MA, Dumais N (2012) Involvement of the MAPK and RhoA/ROCK pathways in PGE2-mediated CCR7-dependent monocyte migration. Immunol Lett 146:70–73

    Article  CAS  PubMed  Google Scholar 

  • Baldi P, Long AD (2001) A Bayesian framework for the analysis of microarray expression data: regularized t -test and statistical inferences of gene changes. Bioinformatics 17:509–519

    Article  CAS  PubMed  Google Scholar 

  • Beatty SC, Yuki KE, Eva MM, Dauphinee S, Lariviere L, Vidal SM, Malo D (2016) Survival analysis and microarray profiling identify Cd40 as a candidate for the Salmonella susceptibility locus, Ity5. Genes Immun 17:19–29

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate—a practical and powerful approach to multiple testing. J R Stat Soc B Methodol 57:289–300

    Google Scholar 

  • Bhan MK, Bahl R, Bhatnagar S (2005) Typhoid and paratyphoid fever. Lancet 366:749–762

    Article  CAS  PubMed  Google Scholar 

  • Boisleve F, Kerdine-Romer S, Rougier-Larzat N, Pallardy M (2004) Nickel and DNCB induce CCR7 expression on human dendritic cells through different signalling pathways: role of TNF-alpha and MAPK. J Investig Dermatol 123:494–502

    Article  CAS  PubMed  Google Scholar 

  • Boivin GA, Pothlichet J, Skamene E, Brown EG, Loredo-Osti JC, Sladek R, Vidal SM (2012) Mapping of clinical and expression quantitative trait loci in a sex-dependent effect of host susceptibility to mouse-adapted influenza H3N2/HK/1/68. J Immunol 188:3949–3960

    Article  CAS  PubMed  Google Scholar 

  • Darton TC, Blohmke CJ, Pollard AJ (2014) Typhoid epidemiology, diagnostics and the human challenge model. Curr Opin Gastroenterol 30:7–17

    Article  PubMed  Google Scholar 

  • Edgar R, Domrachev M, Lash AE (2002) Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30:207–210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eva MM, Yuki KE, Dauphinee SM, Schwartzentruber JA, Pyzik M, Paquet M, Lathrop M, Majewski J, Vidal SM, Malo D (2014) Altered IFN-gamma-mediated immunity and transcriptional expression patterns in N-ethyl-N-nitrosourea-induced STAT4 mutants confer susceptibility to acute typhoid-like disease. J Immunol 192:259–270

    Article  CAS  PubMed  Google Scholar 

  • Forster R, Davalos-Misslitz AC, Rot A (2008) CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol 8:362–371

    Article  PubMed  Google Scholar 

  • Fortin A, Diez E, Rochefort D, Laroche L, Malo D, Rouleau GA, Gros P, Skamene E (2001) Recombinant congenic strains derived from A/J and C57BL/6J: a tool for genetic dissection of complex traits. Genomics 74:21–35

    Article  CAS  PubMed  Google Scholar 

  • Hartigan AJ, Kallal LE, Hogaboam CM (2010) CCR7 impairs hematopoiesis after hematopoietic stem cell transplantation increasing susceptibility to invasive aspergillosis. Blood 116:5383–5393

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Sancho-Shimizu V, Prendergast C, Roy MF, Loredo-Osti JC, Malo D (2012) Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun 13:175–183

    Article  CAS  PubMed  Google Scholar 

  • Mogasale V, Maskery B, Ochiai RL, Lee JS, Mogasale VV, Ramani E, Kim YE, Park JK, Wierzba TF (2014) Burden of typhoid fever in low-income and middle-income countries: a systematic, literature-based update with risk-factor adjustment. Lancet Glob Health 2:e570–e580

    Article  PubMed  Google Scholar 

  • Mueller SN, Hosiawa-Meagher KA, Konieczny BT, Sullivan BM, Bachmann MF, Locksley RM, Ahmed R, Matloubian M (2007) Regulation of homeostatic chemokine expression and cell trafficking during immune responses. Science 317:670–674

    Article  CAS  PubMed  Google Scholar 

  • Murie C, Woody O, Lee AY, Nadon R (2009) Comparison of small n statistical tests of differential expression applied to microarrays. BMC Bioinform 10:45

    Article  Google Scholar 

  • Noor S, Wilson EH (2012) Role of C-C chemokine receptor type 7 and its ligands during neuroinflammation. J Neuroinflammation 9:77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien AD, Taylor BA, Rosenstreich DL (1984) Genetic control of natural resistance to Salmonella typhimurium in mice during the late phase of infection. J Immunol 133:3313–3318

    PubMed  Google Scholar 

  • Riol-Blanco L, Sanchez-Sanchez N, Torres A, Tejedor A, Narumiya S, Corbi AL, Sanchez-Mateos P, Rodriguez-Fernandez JL (2005) The chemokine receptor CCR7 activates in dendritic cells two signaling modules that independently regulate chemotaxis and migratory speed. J Immunol 174:4070–4080

    Article  CAS  PubMed  Google Scholar 

  • Roy MF, Riendeau N, Loredo-Osti JC, Malo D (2006) Complexity in the host response to Salmonella Typhimurium infection in AcB and BcA recombinant congenic strains. Genes Immun 7:655–666

    Article  CAS  PubMed  Google Scholar 

  • Roy MF, Riendeau N, Bedard C, Helie P, Min-Oo G, Turcotte K, Gros P, Canonne-Hergaux F, Malo D (2007) Pyruvate kinase deficiency confers susceptibility to Salmonella typhimurium infection in mice. J Exp Med 204:2949–2961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha A, Sazawal S, Kumar R, Sood S, Reddaiah VP, Singh B, Rao M, Naficy A, Clemens JD, Bhan MK (1999) Typhoid fever in children aged less than 5 years. Lancet 354:734–737

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Unsoeld H, Voehringer D, Krautwald S, Pircher H (2004) Constitutive expression of CCR7 directs effector CD8 T cells into the splenic white pulp and impairs functional activity. J Immunol 173:3013–3019

    Article  CAS  PubMed  Google Scholar 

  • Verdugo RA, Deschepper CF, Munoz G, Pomp D, Churchill GA (2009) Importance of randomization in microarray experimental designs with Illumina platforms. Nucleic Acids Res 37:5610–5618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal SM, Malo D, Marquis JF, Gros P (2008) Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 26:81–132

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Line Larivière and Catherine Paré for their technical help. This work was supported by the Canadian Institutes of Health Research (CIHR) Operating Grant to DM (MOP-15461).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Malo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 115 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beatty, S., Rached-D’Astous, L. & Malo, D. Complex genetics architecture contributes to Salmonella resistance in AcB60 mice. Mamm Genome 28, 38–46 (2017). https://doi.org/10.1007/s00335-016-9672-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9672-5

Keywords

Navigation