Mammalian Genome

, Volume 28, Issue 1–2, pp 56–65 | Cite as

Evaluation of the genetic basis of primary hypoadrenocorticism in Standard Poodles using SNP array genotyping and whole-genome sequencing

  • Steven G. FriedenbergEmail author
  • Katharine F. Lunn
  • Kathryn M. Meurs


Primary hypoadrenocorticism, also known as Addison’s disease, is an autoimmune disorder leading to the destruction of the adrenal cortex and subsequent loss of glucocorticoid and mineralocorticoid hormones. The disease is prevalent in Standard Poodles and is believed to be highly heritable in the breed. Using genotypes derived from the Illumina Canine HD SNP array, we performed a genome-wide association study of 133 carefully phenotyped Standard Poodles (61 affected, 72 unaffected) and found no markers significantly associated with the disease. We also sequenced the entire genomes of 20 Standard Poodles (13 affected, 7 unaffected) and analyzed the data to identify common variants (including SNPs, indels, structural variants, and copy number variants) across affected dogs and variants segregating within a single pedigree of highly affected dogs. We identified several candidate genes that may be fixed in both Standard Poodles and a small population of dogs of related breeds. Further studies are required to confirm these findings more broadly, as well as additional gene-mapping efforts aimed at fully understanding the genetic basis of what is likely a complex inherited disorder.


Validation Cohort Impute Genotype Variant Effect Predictor Standard Poodle Cavalier King Charles Spaniel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



SGF is supported by a National Institutes of Health T32 training award (5T32OD011130-07). Funding for whole-genome sequencing was provided in part by the Poodle Club of America Foundation and the Morris Animal Foundation. Seed funding for this project was provided by the North Carolina State University Comparative Medicine Institute. Some whole-genome sequencing data were graciously contributed by Drs. Leigh Anne-Clark (13 dogs), Natasha J. Olby and Theirry Olivry (11 dogs), and Joshua A. Stern (two dogs).

Author contributions

SGF collected samples, designed the study, analyzed the data, and wrote the manuscript. KFL collected samples and provided guidance regarding phenotyping of dogs. KMM collected samples and supervised the study. All authors have read and edited the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

335_2016_9671_MOESM1_ESM.tiff (1.8 mb)
Supplemental figure 1—Scoring algorithm and follow-up criterial used to evaluate genetic variants for Addison’s disease. Each variant was allocated one point for meeting criteria in each of three categories: variant consequence, GERP++ conservation score, or biological function (top). Scoring was carried out using custom scripting/filtering in R. A maximum of 3 points was allocated to each variant. After each variant was scored, specific follow-up criteria were applied by manual curation (bottom). Variants flagged for follow-up were evaluated in additional population of dogs as described in the Methods section of the text. See for a complete listing of VEP variant consequences. (TIFF 1848 kb)
335_2016_9671_MOESM2_ESM.tiff (36.1 mb)
Supplemental figure 2—Principal components plots of the first and second eigenvalues for 175 Standard Poodles passing initial filtering criteria. Individual dogs are colored to indicate (A) MDS outliers, (B) phenotype, and (C) gender. In (A), gray squares represent the 42 dogs that were removed from from downstream GWAS analysis based upon MDS outlier detection. (TIFF 36918 kb)
335_2016_9671_MOESM3_ESM.xlsx (45 kb)
Supplementary material 3 (XLSX 44 kb)
335_2016_9671_MOESM4_ESM.xlsx (28 kb)
Supplementary material 4 (XLSX 27 kb)
335_2016_9671_MOESM5_ESM.xlsx (169 kb)
Supplementary material 5 (XLSX 169 kb)
335_2016_9671_MOESM6_ESM.xlsx (31 kb)
Supplementary material 6 (XLSX 30 kb)


  1. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29. doi: 10.1038/75556 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Blomhoff A, Lie BA, Myhre AG et al (2004) Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison’s disease. J Clin Endocrinol Metab 89:3474–3476. doi: 10.1210/jc.2003-031854 CrossRefPubMedGoogle Scholar
  3. Boag AM, Catchpole B (2014) A review of the genetics of hypoadrenocorticism. Top Companion Anim Med 29:96–101. doi: 10.1053/j.tcam.2015.01.001 CrossRefPubMedGoogle Scholar
  4. Boag AM, Christie MR, McLaughlin KA et al (2015) Autoantibodies against cytochrome P450 side-chain cleavage enzyme in dogs (Canis lupus familiaris) affected with hypoadrenocorticism (Addison’s Disease). PLoS ONE 10:e0143458. doi: 10.1371/journal.pone.0143458 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bogdanos DP, Smyk DS, Invernizzi P et al (2013) Tracing environmental markers of autoimmunity: introducing the infectome. Immunol Res 56:220–240. doi: 10.1007/s12026-013-8399-6 CrossRefPubMedGoogle Scholar
  6. Cartwright JA, Stone J, Rick M, Dunning MD (2016) Polyglandular endocrinopathy type II (Schmidt’s syndrome) in a Dobermann pinscher. J Small Anim Pract 57:491–494. doi: 10.1111/jsap.12535 CrossRefPubMedGoogle Scholar
  7. Colafrancesco S, Agmon-Levin N, Perricone C, Shoenfeld Y (2013) Unraveling the soul of autoimmune diseases: pathogenesis, diagnosis and treatment adding dowels to the puzzle. Immunol Res 56:200–205. doi: 10.1007/s12026-013-8429-4 CrossRefPubMedGoogle Scholar
  8. Davydov EV, Goode DL, Sirota M et al (2010) Identifying a high fraction of the human genome to be under selective constraint using GERP++. PLoS Comp Biol 6:e1001025. doi: 10.1371/journal.pcbi.1001025 CrossRefGoogle Scholar
  9. Delaneau O, Marchini J, Zagury J-F (2012) A linear complexity phasing method for thousands of genomes. Nat Methods 9:179–181. doi: 10.1038/nmeth.1785 CrossRefGoogle Scholar
  10. Downs LM, Wallin-Håkansson B, Boursnell M et al (2011) A frameshift mutation in golden retriever dogs with progressive retinal atrophy endorses SLC4A3 as a candidate gene for human retinal degenerations. PLoS ONE 6:e21452. doi: 10.1371/journal.pone.0021452 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Drögemüller M, Jagannathan V, Becker D et al (2014) A Mutation in the FAM83G gene in dogs with Hereditary footpad hyperkeratosis (HFH). PLoS Genet 10:e1004370. doi: 10.1371/journal.pgen.1004370 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Famula TR, Belanger JM, Oberbauer AM (2003) Heritability and complex segregation analysis of hypoadrenocorticism in the standard poodle. J Small Anim Pract 44:8–12CrossRefPubMedGoogle Scholar
  13. Frank CB, Valentin SY, Scott-Moncrieff JCR, Miller MA (2013) Correlation of inflammation with adrenocortical atrophy in canine adrenalitis. J Comp Pathol 149:268–279. doi: 10.1016/j.jcpa.2012.11.242 CrossRefPubMedGoogle Scholar
  14. Friedenberg SG, Meurs KM (2016) Genotype imputation in the domestic dog. Mamm Genome. doi: 10.1007/s00335-016-9636-9 Google Scholar
  15. Friedenberg SG, Meurs KM, Mackay TFC (2016) Evaluation of artificial selection in Standard Poodles using whole-genome sequencing. Mamm Genome. doi: 10.1007/s00335-016-9660-9 Google Scholar
  16. Hadlow WJ (1953) Adrenal cortical atrophy in the dog; report of three cases. Am J Path 29:353–361PubMedPubMedCentralGoogle Scholar
  17. Hanson JM, Tengvall K, Bonnett BN, Hedhammar A (2015) Naturally occurring adrenocortical insufficiency—an epidemiological study based on a Swedish-insured dog population of 525,028 dogs. J Vet Intern Med. doi: 10.1111/jvim.13815 Google Scholar
  18. Hayward JJ, Castelhano MG, Oliveira KC et al (2016) Complex disease and phenotype mapping in the domestic dog. Nat Commun 7:10460. doi: 10.1038/ncomms10460 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Howie BN, Donnelly P, Marchini J (2009) A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. PLoS Genet 5:e1000529. doi: 10.1371/journal.pgen.1000529 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hughes AM, Nelson RW, Famula TR, Bannasch DL (2007) Clinical features and heritability of hypoadrenocorticism in Nova Scotia Duck Tolling Retrievers: 25 cases (1994–2006). J Am Vet Med Assoc 231:407–412. doi: 10.2460/javma.231.3.407 CrossRefPubMedGoogle Scholar
  21. Jagannathan V, Bannoehr J, Plattet P et al (2013) A mutation in the SUV39H2 gene in Labrador Retrievers with hereditary nasal parakeratosis (HNPK) provides insights into the epigenetics of keratinocyte differentiation. PLoS Genet 9:e1003848. doi: 10.1371/journal.pgen.1003848 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Kang HM, Sul JH, Service SK et al (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354CrossRefPubMedPubMedCentralGoogle Scholar
  23. Klambauer G, Schwarzbauer K, Mayr A et al (2012) cn.MOPS: mixture of poissons for discovering copy number variations in next-generation sequencing data with a low false discovery rate. Nucleic Acids Res 40:e69–e69. doi: 10.1093/nar/gks003 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kyöstilä K, Cizinauskas S, Seppälä EH et al (2012) A SEL1L mutation links a canine progressive early-onset cerebellar ataxia to the endoplasmic reticulum-associated protein degradation (ERAD) machinery. PLoS Genet 8:e1002759. doi: 10.1371/journal.pgen.1002759 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Lawrence M, Huber W, Pagès H et al (2013) Software for computing and annotating genomic ranges. PLoS Comp Biol 9:e1003118. doi: 10.1371/journal.pcbi.1003118 CrossRefGoogle Scholar
  26. Lennon EM, Boyle TE, Hutchins RG et al (2007) Use of basal serum or plasma cortisol concentrations to rule out a diagnosis of hypoadrenocorticism in dogs: 123 cases (2000-2005). J Am Vet Med Assoc 231:413–416. doi: 10.2460/javma.231.3.413 CrossRefPubMedGoogle Scholar
  27. Lequarré A-S, Andersson L, André C et al (2011) LUPA: a European initiative taking advantage of the canine genome architecture for unravelling complex disorders in both human and dogs. Vet J 189:155–159. doi: 10.1016/j.tvjl.2011.06.013 CrossRefPubMedGoogle Scholar
  28. Marchini J, Howie B, Myers S et al (2007) A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet 39:906–913. doi: 10.1038/ng2088 CrossRefPubMedGoogle Scholar
  29. McLaren W, Pritchard B, Rios D et al (2010) Deriving the consequences of genomic variants with the ensembl API and SNP effect predictor. Bioinformatics 26:2069–2070. doi: 10.1093/bioinformatics/btq330 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Meurs KM, Mauceli E, Lahmers S et al (2010) Genome-wide association identifies a deletion in the 3′ untranslated region of striatin in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet 128:315–324. doi: 10.1007/s00439-010-0855-y CrossRefPubMedPubMedCentralGoogle Scholar
  31. Mitchell AL, Pearce SHS (2012) Autoimmune Addison disease: pathophysiology and genetic complexity. Nat Rev Endocrinol 8:306–316. doi: 10.1038/nrendo.2011.245 CrossRefPubMedGoogle Scholar
  32. Myhre AG, Undlien DE, Løvås K et al (2002) Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J Clin Endocrinol Metab 87:618–623. doi: 10.1210/jcem.87.2.8192 CrossRefPubMedGoogle Scholar
  33. Oberbauer AM, Bell JS, Belanger JM, Famula TR (2006) Genetic evaluation of Addison’s disease in the Portuguese water dog. BMC Vet Res 2:15. doi: 10.1186/1746-6148-2-15 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pedersen NC, Brucker L, Tessier NG et al (2015) The effect of genetic bottlenecks and inbreeding on the incidence of two major autoimmune diseases in standard poodles, sebaceous adenitis and Addison’s disease. Canine Genet Epidemiol 2:14. doi: 10.1186/s40575-015-0026-5 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Petryszak R, Keays M, Tang YA et al (2016) Expression Atlas update–an integrated database of gene and protein expression in humans, animals and plants. Nucleic Acids Res 44:D746–D752. doi: 10.1093/nar/gkv1045 CrossRefPubMedGoogle Scholar
  36. Safra N, Bassuk AG, Ferguson PJ et al (2013) Genome-wide association mapping in dogs enables identification of the homeobox gene, NKX2-8, as a genetic component of neural tube defects in humans. PLoS Genet 9:e1003646. doi: 10.1371/journal.pgen.1003646 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Schaer M, Riley WJ, Buergelt CD et al (1986) Autoimmunity and Addison’s disease in the dog. J Am Anim Hosp Assoc 22:786–794Google Scholar
  38. Skinningsrud B, Husebye ES, Gervin K et al (2008a) Mutation screening of PTPN22: association of the 1858T-allele with Addison’s disease. Eur J Hum Genet 16:977–982. doi: 10.1038/ejhg.2008.33 CrossRefPubMedGoogle Scholar
  39. Skinningsrud B, Husebye ES, Pearce SH et al (2008b) Polymorphisms in CLEC16A and CIITA at 16p13 are associated with primary adrenal insufficiency. J Clin Endocrinol Metab 93:3310–3317. doi: 10.1210/jc.2008-0821 CrossRefPubMedGoogle Scholar
  40. Tengvall K, Kierczak M, Bergvall K et al (2013) Genome-wide analysis in German shepherd dogs reveals association of a locus on CFA 27 with atopic dermatitis. PLoS Genet 9:e1003475. doi: 10.1371/journal.pgen.1003475 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Treangen TJ, Salzberg SL (2012) Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 13:36–46. doi: 10.1038/nrg3117 Google Scholar
  42. Van Lanen K, Sande A (2014) Canine hypoadrenocorticism: pathogenesis, diagnosis, and treatment. Top Companion Anim Med 29:88–95. doi: 10.1053/j.tcam.2014.10.001 CrossRefPubMedGoogle Scholar
  43. vonHoldt BM, Pollinger JP, Lohmueller KE et al (2010) Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898–902. doi: 10.1038/nature08837 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Wiik AC, Wade C, Biagi T et al (2008) A deletion in nephronophthisis 4 (NPHP4) is associated with recessive cone-rod dystrophy in standard wire-haired dachshund. Genome Res 18:1415–1421. doi: 10.1101/gr.074302.107 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Wolf ZT, Leslie EJ, Arzi B et al (2014) A LINE-1 insertion in DLX6 is responsible for cleft palate and mandibular abnormalities in a canine model of Pierre Robin sequence. PLoS Genet 10:e1004257. doi: 10.1371/journal.pgen.1004257 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Ye K, Schulz MH, Long Q et al (2009) Pindel: a pattern growth approach to detect break points of large deletions and medium sized insertions from paired-end short reads. Bioinformatics 25:2865–2871. doi: 10.1093/bioinformatics/btp394 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Steven G. Friedenberg
    • 1
    • 2
    • 3
    Email author
  • Katharine F. Lunn
    • 1
    • 2
  • Kathryn M. Meurs
    • 1
    • 2
  1. 1.Department of Clinical Sciences, College of Veterinary MedicineNorth Carolina State UniversityRaleighUSA
  2. 2.Comparative Medicine InstituteNorth Carolina State UniversityRaleighUSA
  3. 3.Department of Veterinary Clinical Sciences, College of Veterinary MedicineUniversity of MinnesotaSaint PaulUSA

Personalised recommendations