Mammalian Genome

, Volume 27, Issue 7–8, pp 279–288 | Cite as

The dog aging project: translational geroscience in companion animals

  • Matt KaeberleinEmail author
  • Kate E. Creevy
  • Daniel E. L. Promislow


Studies of the basic biology of aging have identified several genetic and pharmacological interventions that appear to modulate the rate of aging in laboratory model organisms, but a barrier to further progress has been the challenge of moving beyond these laboratory discoveries to impact health and quality of life for people. The domestic dog, Canis familiaris, offers a unique opportunity for surmounting this barrier in the near future. In particular, companion dogs share our environment and play an important role in improving the quality of life for millions of people. Here, we present a rationale for increasing the role of companion dogs as an animal model for both basic and clinical geroscience and describe complementary approaches and ongoing projects aimed at achieving this goal.


Metformin Rapamycin Healthy Aging Rapamycin Treatment Impaired Glucose Homeostasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work is supported by a grant from the University of Washington Nathan Shock Center of Excellence in the Basic Biology of Aging (NIH P30AG013280) to MK and NIH Grant R24AG044284 to DP and KC.


  1. Anisimov VN (2013) Metformin: do we finally have an anti-aging drug? Cell Cycle 12:3483–3489CrossRefPubMedPubMedCentralGoogle Scholar
  2. Anisimov VN, Egormin PA, Piskunova TS, Popovich IG, Tyndyk ML, Yurova MN, Zabezhinski MA, Anikin IV, Karkach AS, Romanyukha AA (2010) Metformin extends life span of HER-2/neu transgenic mice and in combination with melatonin inhibits growth of transplantable tumors in vivo. Cell Cycle 9:188–197CrossRefPubMedGoogle Scholar
  3. Anisimov VN, Berstein LM, Popovich IG, Zabezhinski MA, Egormin PA, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Kovalenko IG, Poroshina TE (2011a) If started early in life, metformin treatment increases life span and postpones tumors in female SHR mice. Aging (Albany NY) 3:148–157CrossRefGoogle Scholar
  4. Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS, Semenchenko AV, Tyndyk ML, Yurova MN, Rosenfeld SV, Blagosklonny MV (2011b) Rapamycin increases lifespan and inhibits spontaneous tumorigenesis in inbred female mice. Cell Cycle 10:4230–4236CrossRefPubMedGoogle Scholar
  5. Augustine JJ, Bodziak KA, Hricik DE (2007) Use of sirolimus in solid organ transplantation. Drugs 67:369–391CrossRefPubMedGoogle Scholar
  6. Bannister CA, Holden SE, Jenkins-Jones S, Morgan CL, Halcox JP, Schernthaner G, Mukherjee J, Currie CJ (2014) Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea monotherapy and matched, non-diabetic controls. Diabetes Obes Metab 16:1165–1173CrossRefPubMedGoogle Scholar
  7. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342CrossRefPubMedGoogle Scholar
  8. Bonnett BN, Egenvall A, Hedhammar A, Olson P (2005) Mortality in over 350,000 insured Swedish dogs from 1995–2000: I. Breed-, gender-, age- and cause-specific rates. Acta Vet Scand 46:105–120CrossRefPubMedPubMedCentralGoogle Scholar
  9. Burch JB, Augustine AD, Frieden LA, Hadley E, Howcroft TK, Johnson R, Khalsa PS, Kohanski RA, Li XL, Macchiarini F, Niederehe G, Oh YS, Pawlyk AC, Rodriguez H, Rowland JH, Shen GL, Sierra F, Wise BC (2014) Advances in geroscience: impact on healthspan and chronic disease. J Gerontol A Biol Sci Med Sci 69(Suppl 1):S1–S3CrossRefPubMedPubMedCentralGoogle Scholar
  10. Check Hayden E (2014) Pet dogs set to test anti-ageing drug. Nature 514:546CrossRefPubMedGoogle Scholar
  11. Check Hayden E (2015) Anti-ageing pill pushed as bona fide drug. Nature 522:265–266CrossRefPubMedGoogle Scholar
  12. Chen C, Liu Y, Zheng P (2009) mTOR regulation and therapeutic rejuvenation of aging hematopoietic stem cells. Sci Signal 2:ra75PubMedPubMedCentralGoogle Scholar
  13. Creevy KE, Austad SN, Hoffman JM, O’Neill DG, Promislow DE (2016) The companion dog as a model for the longevity dividend. Cold Spring Harb Perspect Med 6:a026633CrossRefPubMedGoogle Scholar
  14. Dai DF, Karunadharma PP, Chiao YA, Basisty N, Crispin D, Hsieh EJ, Chen T, Gu H, Djukovic D, Raftery D, Beyer RP, MacCoss MJ, Rabinovitch PS (2014) Altered proteome turnover and remodeling by short-term caloric restriction or rapamycin rejuvenate the aging heart. Aging Cell 13:529–539CrossRefPubMedPubMedCentralGoogle Scholar
  15. de Oliveira MA, Martins EMF, Wang Q, Sonis S, Demetri G, George S, Butrynski J, Treister NS (2011) Clinical presentation and management of mTOR inhibitor-associated stomatitis. Oral Oncol 47:998–1003CrossRefPubMedGoogle Scholar
  16. DiNicolantonio JJ, Bhutani J, O’Keefe JH (2015) Acarbose: safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2:e000327CrossRefPubMedPubMedCentralGoogle Scholar
  17. Egenvall A, Bonnett BN, Hedhammar A, Olson P (2005) Mortality in over 350,000 insured Swedish dogs from 1995–2000: II. Breed-specific age and survival patterns and relative risk for causes of death. Acta Vet Scand 46:121–136CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ferrucci L (2008) The Baltimore longitudinal study of aging (BLSA): a 50-year-long journey and plans for the future. J Gerontol A Biol Sci Med Sci 63:1416–1419CrossRefPubMedGoogle Scholar
  19. Fleming JM, Creevy KE, Promislow DE (2011) Mortality in north american dogs from 1984 to 2004: an investigation into age-, size-, and breed-related causes of death. J Vet Intern Med 25:187–198CrossRefPubMedGoogle Scholar
  20. Flynn JM, O’Leary MN, Zambataro CA, Academia EC, Presley MP, Garrett BJ, Zykovich A, Mooney SD, Strong R, Rosen CJ, Kapahi P, Nelson MD, Kennedy BK, Melov S (2013) Late-life rapamycin treatment reverses age-related heart dysfunction. Aging Cell 12:851–862CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fontana L, Meyer TE, Klein S, Holloszy JO (2004) Long-term calorie restriction is highly effective in reducing the risk for atherosclerosis in humans. Proc Natl Acad Sci U S A 101:6659–6663CrossRefPubMedPubMedCentralGoogle Scholar
  22. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20:953–966CrossRefPubMedGoogle Scholar
  23. Freeman LM (2012) Cachexia and sarcopenia: emerging syndromes of importance in dogs and cats. Journal of veterinary internal medicine/American College of Veterinary Internal Medicine 26:3–17CrossRefPubMedGoogle Scholar
  24. Gilmore KM, Greer KA (2015) Why is the dog an ideal model for aging research? Exp Gerontol 71:14–20CrossRefPubMedGoogle Scholar
  25. Goldman DP, Cutler D, Rowe JW, Michaud PC, Sullivan J, Peneva D, Olshansky SJ (2013) Substantial health and economic returns from delayed aging may warrant a new focus for medical research. Health Aff 32:1698–1705CrossRefGoogle Scholar
  26. Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, Mercken EM, Palmeira CM, de Cabo R, Rolo AP, Turner N, Bell EL, Sinclair DA (2013) Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 155:1624–1638CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gordon I, Paoloni M, Mazcko C, Khanna C (2009) The Comparative Oncology Trials Consortium: using spontaneously occurring cancers in dogs to inform the cancer drug development pathway. PLoS Med 6:e1000161CrossRefPubMedPubMedCentralGoogle Scholar
  28. Greeley EH, Spitznagel E, Lawler DF, Kealy RD, Segre M (2006) Modulation of canine immunosenescence by life-long caloric restriction. Vet Immunol Immunopathol 111:287–299CrossRefPubMedGoogle Scholar
  29. Greer KA, Canterberry SC, Murphy KE (2007) Statistical analysis regarding the effects of height and weight on life span of the domestic dog. Res Vet Sci 82:208–214CrossRefPubMedGoogle Scholar
  30. Guy MK, Page RL, Jensen WA, Olson PN, Haworth JD, Searfoss EE, Brown DE (2015) The Golden Retriever Lifetime Study: establishing an observational cohort study with translational relevance for human health. Philos Trans R Soc Lond B Biol Sci 370:20140230CrossRefPubMedPubMedCentralGoogle Scholar
  31. Halloran J, Hussong SA, Burbank R, Podlutskaya N, Fischer KE, Sloane LB, Austad SN, Strong R, Richardson A, Hart MJ, Galvan V (2012) Chronic inhibition of mammalian target of rapamycin by rapamycin modulates cognitive and non-cognitive components of behavior throughout lifespan in mice. Neuroscience 223:102–113CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harrison DE, Strong R, Allison DB, Ames BN, Astle CM, Atamna H, Fernandez E, Flurkey K, Javors MA, Nadon NL, Nelson JF, Pletcher S, Simpkins JW, Smith D, Wilkinson JE, Miller RA (2014) Acarbose, 17-alpha-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell 13:273–282CrossRefPubMedGoogle Scholar
  33. He K, Shi JC, Mao XM (2014) Safety and efficacy of acarbose in the treatment of diabetes in Chinese patients. Ther Clin Risk Manag 10:505–511PubMedPubMedCentralGoogle Scholar
  34. Holloszy JO, Fontana L (2007) Caloric restriction in humans. Exp Gerontol 42:709–712CrossRefPubMedPubMedCentralGoogle Scholar
  35. Johnson SC, Rabinovitch PS, Kaeberlein M (2013) mTOR is a key modulator of ageing and age-related disease. Nature 493:338–345CrossRefPubMedPubMedCentralGoogle Scholar
  36. Johnson SC, Sangesland M, Kaeberlein M, Rabinovitch PS (2015) Modulating mTOR in aging and health. Interdisciplinary topics in gerontology 40:107–127CrossRefPubMedGoogle Scholar
  37. Kaeberlein M (2013) Longevity and aging. F1000prime reports 5(5)Google Scholar
  38. Kaeberlein M (2013b) mTOR inhibition: from aging to autism and beyond. Scientifica (Cairo) 2013:849186Google Scholar
  39. Kaeberlein M (2014) Rapamycin and ageing: when, for how long, and how much? J Genet Genomics 41:459–463CrossRefPubMedPubMedCentralGoogle Scholar
  40. Kaeberlein M (2015) The Biology of Aging: Citizen Scientists and their pets as a bridge between research on model organisms and human subjects. Vet Pathol 53:291–298CrossRefPubMedGoogle Scholar
  41. Kaeberlein M, Rabinovitch PS, Martin GM (2015) Healthy aging: the ultimate preventative medicine. Science 350:1191–1193CrossRefPubMedPubMedCentralGoogle Scholar
  42. Kealy RD, Lawler DE, Ballam JM, Mantz SL, Biery DN, Greeley EH, Lust G, Segre M, Smith GK, Stowe HD (2002) Effects of diet restriction on life span and age-related changes in dogs. J Am Vet Med Assoc 220:1315–1320CrossRefPubMedGoogle Scholar
  43. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, Franceschi C, Lithgow GJ, Morimoto RI, Pessin JE, Rando TA, Richardson A, Schadt EE, Wyss-Coray T, Sierra F (2014) Geroscience: linking aging to chronic disease. Cell 159:709–713CrossRefPubMedPubMedCentralGoogle Scholar
  44. Kraus C, Pavard S, Promislow DE (2013) The size-life span trade-off decomposed: why large dogs die young. Am Nat 181:492–505CrossRefPubMedGoogle Scholar
  45. Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh M, Stevens DM, Davis JG, Salmon AB, Richardson A, Ahima RS, Guertin DA, Sabatini DM, Baur JA (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643CrossRefPubMedPubMedCentralGoogle Scholar
  46. Larson G, Karlsson EK, Perri A, Webster MT, Ho SY, Peters J, Stahl PW, Piper PJ, Lingaas F, Fredholm M, Comstock KE, Modiano JF, Schelling C, Agoulnik AI, Leegwater PA, Dobney K, Vigne JD, Vila C, Andersson L, Lindblad-Toh K (2012) Rethinking dog domestication by integrating genetics, archeology, and biogeography. Proc Natl Acad Sci U S A 109:8878–8883CrossRefPubMedPubMedCentralGoogle Scholar
  47. Larson JC, Allstadt SD, Fan TM, Khanna C, Lunghofer PJ, Hansen RJ, Gustafson DL, Legendre AM, Galyon GD, LeBlanc AK, Martin-Jimenez T (2016) Pharmacokinetics of orally administered low-dose rapamycin in healthy dogs. Am J Vet Res 77:65–71CrossRefPubMedGoogle Scholar
  48. Lawler DF, Ballam JM, Meadows R, Larson BT, Li Q, Stowe HD, Kealy RD (2007) Influence of lifetime food restriction on physiological variables in Labrador retriever dogs. Exp Gerontol 42:204–214CrossRefPubMedGoogle Scholar
  49. Lin AL, Zheng W, Halloran JJ, Burbank RR, Hussong SA, Hart MJ, Javors M, Shih YY, Muir E, Solano Fonseca R, Strong R, Richardson AG, Lechleiter JD, Fox PT, Galvan V (2013) Chronic rapamycin restores brain vascular integrity and function through NO synthase activation and improves memory in symptomatic mice modeling Alzheimer’s disease. J Cereb Blood Flow Metab 33:1412–1421CrossRefPubMedPubMedCentralGoogle Scholar
  50. Majumder S, Caccamo A, Medina DX, Benavides AD, Javors MA, Kraig E, Strong R, Richardson A, Oddo S (2012) Lifelong rapamycin administration ameliorates age-dependent cognitive deficits by reducing IL-1beta and enhancing NMDA signaling. Aging Cell 11:326–335CrossRefPubMedPubMedCentralGoogle Scholar
  51. Mannick JB, Del Giudice G, Lattanzi M, Valiante NM, Praestgaard J, Huang B, Lonetto MA, Maecker HT, Kovarik J, Carson S, Glass DJ, Klickstein LB (2014) mTOR inhibition improves immune function in the elderly. Sci Transl Med 6:268ra179CrossRefPubMedGoogle Scholar
  52. Marsden CD, Ortega-Del Vecchyo D, O’Brien DP, Taylor JF, Ramirez O, Vila C, Marques-Bonet T, Schnabel RD, Wayne RK, Lohmueller KE (2016) Bottlenecks and selective sweeps during domestication have increased deleterious genetic variation in dogs. Proc Natl Acad Sci U S A 113:152–157CrossRefPubMedGoogle Scholar
  53. Martin GM, LaMarco K, Strauss E, Kelner KL (2003) Research on aging: the end of the beginning. Science 299:1339–1341CrossRefPubMedGoogle Scholar
  54. Martin-Montalvo A, Mercken EM, Mitchell SJ, Palacios HH, Mote PL, Scheibye-Knudsen M, Gomes AP, Ward TM, Minor RK, Blouin MJ, Schwab M, Pollak M, Zhang Y, Yu Y, Becker KG, Bohr VA, Ingram DK, Sinclair DA, Wolf NS, Spindler SR, Bernier M, de Cabo R (2013) Metformin improves healthspan and lifespan in mice. Nat commun 4:2192CrossRefPubMedPubMedCentralGoogle Scholar
  55. Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922CrossRefPubMedGoogle Scholar
  56. Mercken EM, Mitchell SJ, Martin-Montalvo A, Minor RK, Almeida M, Gomes AP, Scheibye-Knudsen M, Palacios HH, Licata JJ, Zhang Y, Becker KG, Khraiwesh H, Gonzalez-Reyes JA, Villalba JM, Baur JA, Elliott P, Westphal C, Vlasuk GP, Ellis JL, Sinclair DA, Bernier M, de Cabo R (2014) SRT2104 extends survival of male mice on a standard diet and preserves bone and muscle mass. Aging Cell 13:787–796CrossRefPubMedPubMedCentralGoogle Scholar
  57. Miller RA, Harrison DE, Astle CM, Baur JA, Boyd AR, de Cabo R, Fernandez E, Flurkey K, Javors MA, Nelson JF, Orihuela CJ, Pletcher S, Sharp ZD, Sinclair D, Starnes JW, Wilkinson JE, Nadon NL, Strong R (2011) Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol A Biol Sci Med Sci 66:191–201CrossRefPubMedGoogle Scholar
  58. Mitchell SJ, Martin-Montalvo A, Mercken EM, Palacios HH, Ward TM, Abulwerdi G, Minor RK, Vlasuk GP, Ellis JL, Sinclair DA, Dawson J, Allison DB, Zhang Y, Becker KG, Bernier M, de Cabo R (2014) The SIRT1 activator SRT1720 extends lifespan and improves health of mice fed a standard diet. Cell Rep 6:836–843CrossRefPubMedPubMedCentralGoogle Scholar
  59. Mulvey L, Sinclair A, Selman C (2014) Lifespan modulation in mice and the confounding effects of genetic background. J Genet Genomics 41:497–503CrossRefPubMedPubMedCentralGoogle Scholar
  60. Neff F, Flores-Dominguez D, Ryan DP, Horsch M, Schroder S, Adler T, Afonso LC, Aguilar-Pimentel JA, Becker L, Garrett L, Hans W, Hettich MM, Holtmeier R, Holter SM, Moreth K, Prehn C, Puk O, Racz I, Rathkolb B, Rozman J, Naton B, Ordemann R, Adamski J, Beckers J, Bekeredjian R, Busch DH, Ehninger G, Graw J, Hofler H, Klingenspor M, Klopstock T, Ollert M, Stypmann J, Wolf E, Wurst W, Zimmer A, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Ehninger D (2013) Rapamycin extends murine lifespan but has limited effects on aging. J Clin Investig 123:3272–3291CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nelson RW (2000) Oral medications for treating diabetes mellitus in dogs and cats. J Small Anim Pract 41:486–490CrossRefPubMedGoogle Scholar
  62. Nelson RW, Reusch CE (2014) Animal models of disease: classification and etiology of diabetes in dogs and cats. J Endocrinol 222:T1–T9CrossRefPubMedGoogle Scholar
  63. Paoloni M, Khanna C (2008) Translation of new cancer treatments from pet dogs to humans. Nat Rev Cancer 8:147–156CrossRefPubMedGoogle Scholar
  64. Paoloni MC, Mazcko C, Fox E, Fan T, Lana S, Kisseberth W, Vail DM, Nuckolls K, Osborne T, Yalkowsy S, Gustafson D, Yu Y, Cao L, Khanna C (2010) Rapamycin pharmacokinetic and pharmacodynamic relationships in osteosarcoma: a comparative oncology study in dogs. PLoS One 5:e11013CrossRefPubMedPubMedCentralGoogle Scholar
  65. Parks RJ, Fares E, Macdonald JK, Ernst MC, Sinal CJ, Rockwood K, Howlett SE (2012) A procedure for creating a frailty index based on deficit accumulation in aging mice. J Gerontol A Biol Sci Med Sci 67:217–227CrossRefPubMedGoogle Scholar
  66. Pitt JN, Kaeberlein M (2015) Why is aging conserved and what can we do about it? PLoS Biol 13:e1002131Google Scholar
  67. Popovich IG, Anisimov VN, Zabezhinski MA, Semenchenko AV, Tyndyk ML, Yurova MN, Blagosklonny MV (2014) Lifespan extension and cancer prevention in HER-2/neu transgenic mice treated with low intermittent doses of rapamycin. Cancer Biol Ther 15:586–592CrossRefPubMedPubMedCentralGoogle Scholar
  68. Proschowsky HF, Rugbjerg H, Ersboll AK (2003) Mortality of purebred and mixed-breed dogs in Denmark. Prev Vet Med 58:63–74CrossRefPubMedGoogle Scholar
  69. Ravussin E, Redman LM, Rochon J, Das SK, Fontana L, Kraus WE, Romashkan S, Williamson DA, Meydani SN, Villareal DT, Smith SR, Stein RI, Scott TM, Stewart TM, Saltzman E, Klein S, Bhapkar M, Martin CK, Gilhooly CH, Holloszy JO, Hadley EC, Roberts SB, Group CS (2015) A 2-year randomized controlled trial of human caloric restriction: feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 70:1097–1104CrossRefPubMedGoogle Scholar
  70. Richards SE, Wang Y, Claus SP, Lawler D, Kochhar S, Holmes E, Nicholson JK (2013) Metabolic phenotype modulation by caloric restriction in a lifelong dog study. J Proteome Res 12:3117–3127CrossRefPubMedGoogle Scholar
  71. Richardson A, Fischer KE, Speakman JR, de Cabo R, Mitchell SJ, Peterson CA, Rabinovitch P, Chiao YA, Taffet G, Miller RA, Renteria RC, Bower J, Ingram DK, Ladiges WC, Ikeno Y, Sierra F, Austad SN (2016) Measures of healthspan as indices of aging in mice-a recommendation. J Gerontol A Biol Sci Med Sci 71:427–430CrossRefPubMedGoogle Scholar
  72. Rochon J, Bales CW, Ravussin E, Redman LM, Holloszy JO, Racette SB, Roberts SB, Das SK, Romashkan S, Galan KM, Hadley EC, Kraus WE, Group CS (2011) Design and conduct of the CALERIE study: comprehensive assessment of the long-term effects of reducing intake of energy. J Gerontol A Biol Sci Med Sci 66:97–108Google Scholar
  73. Sasaki H, Asanuma H, Fujita M, Takahama H, Wakeno M, Ito S, Ogai A, Asakura M, Kim J, Minamino T, Takashima S, Sanada S, Sugimachi M, Komamura K, Mochizuki N, Kitakaze M (2009) Metformin prevents progression of heart failure in dogs: role of AMP-activated protein kinase. Circulation 119:2568–2577CrossRefPubMedGoogle Scholar
  74. Savolainen P, Zhang YP, Luo J, Lundeberg J, Leitner T (2002) Genetic evidence for an East Asian origin of domestic dogs. Science 298:1610–1613CrossRefPubMedGoogle Scholar
  75. Schoenebeck JJ, Ostrander EA (2014) Insights into morphology and disease from the dog genome project. Annu Rev Cell Dev Biol 30:535–560CrossRefPubMedGoogle Scholar
  76. Shannon LM, Boyko RH, Castelhano M, Corey E, Hayward JJ, McLean C, White ME, Abi Said M, Anita BA, Bondjengo NI, Calero J, Galov A, Hedimbi M, Imam B, Khalap R, Lally D, Masta A, Oliveira KC, Perez L, Randall J, Tam NM, Trujillo-Cornejo FJ, Valeriano C, Sutter NB, Todhunter RJ, Bustamante CD, Boyko AR (2015) Genetic structure in village dogs reveals a Central Asian domestication origin. Proc Natl Acad Sci U S A 112:13639–13644CrossRefPubMedPubMedCentralGoogle Scholar
  77. Syrjanen KJ (1980) Spleen white pulp morphology as an indicator of the immunological state in DBA/2 mice bearing mastocytoma. Exp Pathol (Jena) 18:223–231Google Scholar
  78. Thamm DH, Vail DM (2015) Veterinary oncology clinical trials: design and implementation. Vet J 205:226–232CrossRefPubMedGoogle Scholar
  79. Tsao CW, Vasan RS (2015) Cohort Profile: The Framingham Heart Study (FHS): overview of milestones in cardiovascular epidemiology. Int J Epidemiol 44:1800–1813CrossRefPubMedGoogle Scholar
  80. Urfer SR, Greer K, Wolf NS (2011) Age-related cataract in dogs: a biomarker for life span and its relation to body size. Age (Dordr) 33:451–460CrossRefGoogle Scholar
  81. Vite CH, Head E (2014) Aging in the canine and feline brain. Vet Clin North Am Small Anim Pract 44:1113–1129CrossRefPubMedPubMedCentralGoogle Scholar
  82. Weindruch R, Walford RL, Fligiel S, Guthrie D (1986) The retardation of aging in mice by dietary restriction: longevity, cancer, immunity and lifetime energy intake. J Nutr 116:641–654PubMedGoogle Scholar
  83. Wess G, Schulze A, Butz V, Simak J, Killich M, Keller LJ, Maeurer J, Hartmann K (2010) Prevalence of dilated cardiomyopathy in Doberman Pinschers in various age groups. J Vet Intern Med 24:533–538CrossRefPubMedGoogle Scholar
  84. Yi H, Brooks ED, Thurberg BL, Fyfe JC, Kishnani PS, Sun B (2014) Correction of glycogen storage disease type III with rapamycin in a canine model. J Mol Med 92:641–650CrossRefPubMedGoogle Scholar
  85. Zhang Y, Bokov A, Gelfond J, Soto V, Ikeno Y, Hubbard G, Diaz V, Sloane L, Maslin K, Treaster S, Rendon S, van Remmen H, Ward W, Javors M, Richardson A, Austad SN, Fischer K (2014) Rapamycin extends life and health in C57BL/6 mice. J Gerontol A Biol Sci Med Sci 69:119–130CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Matt Kaeberlein
    • 1
    Email author
  • Kate E. Creevy
    • 2
  • Daniel E. L. Promislow
    • 1
  1. 1.Department of PathologyUniversity of WashingtonSeattleUSA
  2. 2.Department of Small Animal Medicine and Surgery, College of Veterinary MedicineUniversity of GeorgiaAthensUSA

Personalised recommendations