Skip to main content
Log in

Murine diet/tissue and human brain tumorigenesis alter Mthfr/MTHFR 5′-end methylation

  • Published:
Mammalian Genome Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Polymorphisms and decreased activity of methylenetetrahydrofolate reductase (MTHFR) are linked to disease, including cancer. However, epigenetic regulation has not been thoroughly studied. Our goal was to generate DNA methylation profiles of murine/human MTHFR gene regions and examine methylation in brain and liver tumors. Pyrosequencing in four murine tissues revealed minimal DNA methylation in the CpG island. Higher methylation was seen in liver or intestine in the CpG island shore 5′ to the upstream translational start site or in another region 3′ to the downstream start site. In the latter region, there was negative correlation between expression and methylation. Three orthologous regions were investigated in human MTHFR, as well as a fourth region between the two translation start sites. We found significantly increased methylation in three regions (not the CpG island) in pediatric astrocytomas compared with control brain, with decreased expression in tumors. Methylation in hepatic carcinomas was also increased in the three regions compared with normal liver, but the difference was significant for only one CpG. This work, the first overview of the Mthfr/MTHFR epigenetic landscape, suggests regulation through methylation in some regions, demonstrates increased methylation/decreased expression in pediatric astrocytomas, and should serve as a resource for future epigenetic studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Antequera F et al (1990) High levels of de novo methylation and altered chromatin structure at CpG islands in cell lines. Cell 62:503–514

    Article  CAS  PubMed  Google Scholar 

  • Bailey LB, Caudill MA (2012) Folate. In: Erdman JW, MacDonald IA, Zeisel SH (eds) Present knowledge in nutrition. Oxford, Wiley-Blackwell, pp 321–342

    Chapter  Google Scholar 

  • Botto LD, Yang Q (2000) 5,10-Methylenetetrahydrofolate reductase gene variants and congenital anomalies: a HuGE review. Am J Epidemiol 151:862–877

    Article  CAS  PubMed  Google Scholar 

  • Chen Z et al (2001) Mice deficient in methylenetetrahydrofolate reductase exhibit hyperhomocysteinemia and decreased methylation capacity, with neuropathology and aortic lipid deposition. Hum Mol Genet 10:433–443

    Article  CAS  PubMed  Google Scholar 

  • Christensen KE, Rozen R (2010) Genetic variation: effect on folate metabolism and health. In: Bailey LB (ed) Folate in health and disease. CRC Press, Boca Raton, pp 75–131

    Google Scholar 

  • Christensen KE et al (2010) Steatosis in mice is associated with gender, folate intake, and expression of genes of one-carbon metabolism. J Nutr 140:1736–1741

    Article  CAS  PubMed  Google Scholar 

  • Christensen KE et al (2015) High folic acid consumption leads to pseudo-MTHFR deficiency, altered lipid metabolism, and liver injury in mice. Am J Clin Nutr 101:646–658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devlin AM et al (2004) Effect of Mthfr genotype on diet-induced hyperhomocysteinemia and vascular function in mice. Blood 103:2624–2629

    Article  CAS  PubMed  Google Scholar 

  • Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  • Feinberg AP, Tycko B (2004) The history of cancer epigenetics. Nat Rev Cancer 4:143–153

    Article  CAS  PubMed  Google Scholar 

  • Fontebasso AM et al (2014) Recurrent somatic mutations in ACVR1 in pediatric midline high-grade astrocytoma. Nat Genet 46:462–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frosst P et al (1995) A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 10:111–113

    Article  CAS  PubMed  Google Scholar 

  • Gilbody S et al (2007) Methylenetetrahydrofolate reductase (MTHFR) genetic polymorphisms and psychiatric disorders: a HuGE review. Am J Epidemiol 165:1–13

    Article  PubMed  Google Scholar 

  • Giovannucci E et al (1995) Alcohol, low-methionine–low-folate diets, and risk of colon cancer in men. J Natl Cancer Inst 87:265–273

    Article  CAS  PubMed  Google Scholar 

  • Goyette P et al (1994) Human methylenetetrahydrofolate reductase: isolation of cDNA mapping and mutation identification. Nat Genet 7:195–200

    Article  CAS  PubMed  Google Scholar 

  • Goyette P et al (1998) Gene structure of human and mouse methylenetetrahydrofolate reductase (MTHFR). Mamm Genome 9:652–656

    Article  CAS  PubMed  Google Scholar 

  • Hansen RS, Gartler SM (1990) 5-Azacytidine-induced reactivation of the human × chromosome-linked PGK1 gene is associated with a large region of cytosine demethylation in the 5′ CpG island. Proc Natl Acad Sci USA 87:4174–4178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heijmans BT et al (2003) A common variant of the methylenetetrahydrofolate reductase gene (1p36) is associated with an increased risk of cancer. Cancer Res 63:1249–1253

    CAS  PubMed  Google Scholar 

  • Irizarry RA et al (2009) Genome-wide methylation analysis of human colon cancer reveals similar hypo- and hypermethylation at conserved tissue-specific CpG island shores. Nat Genet 41:178–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones PA, Baylin SB (2002) The fundamental role of epigenetic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  • Junker R et al (2001) Infant methylenetetrahydrofolate reductase 677TT genotype is a risk factor for congenital heart disease. Cardiovasc Res 51:251–254

    Article  CAS  PubMed  Google Scholar 

  • Khazamipour N et al (2009) MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod 24:2361–2364

    Article  CAS  PubMed  Google Scholar 

  • Kleinman CL et al (2014) Fusion of TTYH1 with the C19MC microRNA cluster drives expression of a brain-specific DNMT3B isoform in the embryonal brain tumor ETMR. Nat Genet 46:39–44

    Article  CAS  PubMed  Google Scholar 

  • Knock E et al (2006) Low dietary folate initiates intestinal tumors in mice, with altered expression of G2-M checkpoint regulators polo-like kinase 1 and cell division cycle 25c. Cancer Res 66:10349–10356

    Article  CAS  PubMed  Google Scholar 

  • Knock E et al (2008) Strain differences in mice highlight the role of DNA damage in neoplasia induced by low dietary folate. J Nutr 138:653–658

    CAS  PubMed  Google Scholar 

  • Knock E et al (2011) Susceptibility to intestinal tumorigenesis in folate-deficient mice may be influenced by variation in one-carbon metabolism and DNA repair. J Nutr Biochem 22:1022–1029

    Article  CAS  PubMed  Google Scholar 

  • Kulis M et al (2013) Intragenic DNA methylation in transcriptional regulation, normal differentiation and cancer. Biochim Biophys Acta 1829:1161–1174

    Article  CAS  PubMed  Google Scholar 

  • Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  CAS  PubMed  Google Scholar 

  • Landan G et al (2012) Epigenetic polymorphism and the stochastic formation of differentially methylated regions in normal and cancerous tissues. Nat Genet 44:1207–1214

    Article  CAS  PubMed  Google Scholar 

  • Lawrance AK et al (2009) Methylenetetrahydrofolate reductase deficiency and low dietary folate reduce tumorigenesis in Apc min/+ mice. Gut 58:805–811

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D et al (2003) Characterization of a pseudogene for murine methylenetetrahydrofolate reductase. Mol Cell Biochem 252:391–395

    Article  CAS  PubMed  Google Scholar 

  • Leclerc D et al (2013) Differential gene expression and methylation in the retinoid/PPARA pathway and of tumor suppressors may modify intestinal tumorigenesis induced by low folate in mice. Mol Nutr Food Res 57:686–697

    Article  CAS  PubMed  Google Scholar 

  • Lev Maor G et al (2015) The alternative role of DNA methylation in splicing regulation. Trends Genet 31:274–280

    Article  CAS  PubMed  Google Scholar 

  • Li D, Rozen R (2006) Maternal folate deficiency affects proliferation, but not apoptosis, in embryonic mouse heart. J Nutr 136:1774–1778

    CAS  PubMed  Google Scholar 

  • Liew SC, Gupta ED (2015) Methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism: epidemiology, metabolism and the associated diseases. Eur J Med Genet 58:1–10

    Article  PubMed  Google Scholar 

  • Ma J et al (1997) Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer. Cancer Res 57:1098–1102

    CAS  PubMed  Google Scholar 

  • Maunakea AK et al (2010) Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466:253–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noushmehr H et al (2010) Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 17:510–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickell L et al (2011) Targeted insertion of two Mthfr promoters in mice reveals temporal- and tissue-specific regulation. Mamm Genome 22:635–647

    Article  CAS  PubMed  Google Scholar 

  • Pike BL et al (2008) DNA methylation profiles in diffuse large B-cell lymphoma and their relationship to gene expression status. Leukemia 22:1035–1043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powell SM et al (1992) APC mutations occur early during colorectal tumorigenesis. Nature 359:235–237

    Article  CAS  PubMed  Google Scholar 

  • Rotondo JC et al (2012) Methylenetetrahydrofolate reductase gene promoter hypermethylation in semen samples of infertile couples correlates with recurrent spontaneous abortion. Hum Reprod 27:3632–3638

    Article  CAS  PubMed  Google Scholar 

  • Sibani S et al (2002) Studies of methionine cycle intermediates (SAM, SAH), DNA methylation and the impact of folate deficiency on tumor numbers in Min mice. Carcinogenesis 23:61–65

    Article  CAS  PubMed  Google Scholar 

  • Stankova J et al (2005) Antisense inhibition of methylenetetrahydrofolate reductase reduces cancer cell survival in vitro and tumor growth in vivo. Clin Cancer Res 11:2047–2052

    Article  CAS  PubMed  Google Scholar 

  • Sturm D et al (2012) Hotspot mutations in H3F3A and IDH1 define distinct epigenetic and biological subgroups of glioblastoma. Cancer Cell 22:425–437

    Article  CAS  PubMed  Google Scholar 

  • Tran P et al (2002) Multiple transcription start sites and alternative splicing in the methylenetetrahydrofolate reductase gene result in two enzyme isoforms. Mamm Genome 13:483–492

    Article  CAS  PubMed  Google Scholar 

  • Vaissiere T et al (2009) Quantitative analysis of DNA methylation profiles in lung cancer identifies aberrant DNA methylation of specific genes and its association with gender and cancer risk factors. Cancer Res 69:243–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Put NM et al (1995) Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 346:1070–1071

    Article  PubMed  Google Scholar 

  • Vandesompele J et al (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:1–11

    Article  Google Scholar 

  • Wu W et al (2010) Idiopathic male infertility is strongly associated with aberrant promoter methylation of methylenetetrahydrofolate reductase (MTHFR). PLoS ONE 5:e13884

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Canadian Institutes of Health Research (Grant No. MOP 43232 to RR). NL was supported by a Fellowship from the Fonds de Recherche du Québec - Santé and the RI-MUHC Desjardins Fellowship. The Research Institute is supported by a Centres Grant from the Fonds de Recherche du Québec - Santé.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rima Rozen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical approval

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 541 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lévesque, N., Leclerc, D., Gayden, T. et al. Murine diet/tissue and human brain tumorigenesis alter Mthfr/MTHFR 5′-end methylation. Mamm Genome 27, 122–134 (2016). https://doi.org/10.1007/s00335-016-9624-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9624-0

Keywords

Navigation