Skip to main content

Advertisement

Log in

A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Focal Segmental Glomerulosclerosis (FSGS) is a type of nephrotic syndrome which accounts for 20 and 40 % of such cases in children and adults, respectively. The high prevalence of FSGS makes it the most common primary glomerular disorder causing end-stage renal disease. Although the pathogenesis of this disorder has been widely investigated, the exact mechanism underlying this disease is still to be discovered. Current therapies seek to stop the progression of FSGS and often fail to cure the patients since progression to end-stage renal failure is usually inevitable. In the present work, we use a kidney-specific metabolic network model to study FSGS. The model was obtained by merging two previously published kidney-specific metabolic network models. The validity of the new model was checked by comparing the inactivating reaction genes identified in silico to the list of kidney disease implicated genes. To model the disease state, we used a complete list of FSGS metabolic biomarkers extracted from transcriptome and proteome profiling of patients as well as genetic deficiencies known to cause FSGS. We observed that some specific pathways including chondroitin sulfate degradation, eicosanoid metabolism, keratan sulfate biosynthesis, vitamin B6 metabolism, and amino acid metabolism tend to show variations in FSGS model compared to healthy kidney. Furthermore, we computationally searched for the potential drug targets that can revert the diseased metabolic state to the healthy state. Interestingly, only one drug target, N-acetylgalactosaminidase, was found whose inhibition could alter cellular metabolism towards healthy state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abeling N et al (2000) Pathobiochemical implications of hyperdopaminuria in patients with aromatic l-amino acid decarboxylase deficiency. J Inherit Metab Dis 23(4):325–328

    Article  CAS  PubMed  Google Scholar 

  • Bailey CG et al (2011) Loss-of-function mutations in the glutamate transporter SLC1A1 cause human dicarboxylic aminoaciduria. J Clin Investig 121(1):446–453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett MR et al (2007) Laser capture microdissection-microarray analysis of focal segmental glomerulosclerosis glomeruli. Nephron Exp Nephrol 107(1):e30–e40

    Article  CAS  PubMed  Google Scholar 

  • Blériot Y et al (2014) Synthesis of 1,2-cis-homoiminosugars derived from GlcNAc and GalNAc exploiting a β-amino alcohol skeletal rearrangement. Org Lett 16(21):5512–5515

    Article  PubMed  Google Scholar 

  • Çakır T, Khatibipour MJ (2014) Metabolic network discovery by top-down and bottom-up approaches and paths for reconciliation. Front Bioeng Biotechnol 2:62

    PubMed  PubMed Central  Google Scholar 

  • Chang RL et al (2010) Drug off-target effects predicted using structural analysis in the context of a metabolic network model. PLoS Comput Biol 6(9):e1000938

    Article  PubMed  PubMed Central  Google Scholar 

  • D’Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365(25):2398–2411

    Article  PubMed  Google Scholar 

  • Duarte NC et al (2007) Global reconstruction of the human metabolic network based on genomic and bibliomic data. Proc Natl Acad Sci USA 104(6):1777–1782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fornoni A, Merscher S, Kopp JB (2014) Lipid biology of the podocyte: new perspectives offer new opportunities. Nat Rev Nephrol 10(7):379–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funderburgh J, Caterson B, Conrad G (1987) Distribution of proteoglycans antigenically related to corneal keratan sulfate proteoglycan. J Biol Chem 262(24):11634–11640

    CAS  PubMed  Google Scholar 

  • Hadi M, Marashi S-A (2014) Reconstruction of a generic metabolic network model of cancer cells. Mol BioSyst 10(11):3014–3021

    Article  CAS  PubMed  Google Scholar 

  • Hao C-M, Breyer MD (2008) Physiological regulation of prostaglandins in the kidney. Annu Rev Physiol 70:357–377

    Article  CAS  PubMed  Google Scholar 

  • Hao X et al (2013) Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS One 8(11):e78531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hodgin JB et al (2010) A molecular profile of focal segmental glomerulosclerosis from formalin-fixed, paraffin-embedded tissue. Am J Pathol 177(4):1674–1686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ichida K et al (2012) Mutations associated with functional disorder of xanthine oxidoreductase and hereditary xanthinuria in humans. Int J Mol Sci 13(11):15475–15495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jerby L, Ruppin E (2012) Predicting drug targets and biomarkers of cancer via genome-scale metabolic modeling. Clin Cancer Res 18(20):5572–5584

    Article  CAS  PubMed  Google Scholar 

  • Jones G, Prosser DE, Kaufmann M (2014) Cytochrome P450-mediated metabolism of vitamin D. J Lipid Res 55(1):13–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanwar YS, Linker A, Farquhar MG (1980) Increased permeability of the glomerular basement membrane to ferritin after removal of glycosaminoglycans (heparan sulfate) by enzyme digestion. J Cell Biol 86(2):688–693

    Article  CAS  PubMed  Google Scholar 

  • Kim HU, Sohn SB, Lee SY (2012a) Metabolic network modeling and simulation for drug targeting and discovery. Biotechnol J 7(3):330–342

    Article  CAS  PubMed  Google Scholar 

  • Kim TY et al (2012b) Recent advances in reconstruction and applications of genome-scale metabolic models. Curr Opin Biotechnol 23(4):617–623

    Article  CAS  PubMed  Google Scholar 

  • Kitiyakara C, Kopp JB, Eggers P (2003) Trends in the epidemiology of focal segmental glomerulosclerosis. Semin Nephrol 23(2):172–182

    Article  PubMed  Google Scholar 

  • Klein T, Klaus G, Kömhoff M (2015) Prostacyclin synthase: upregulation during renal development and in glomerular disease as well as its constitutive expression in cultured human mesangial cells. Mediat Inflamm 2015:654151

    Google Scholar 

  • Kopple JD et al (1981) Daily requirement for pyridoxine supplements in chronic renal failure. Kidney Int 19(5):694–704

    Article  CAS  PubMed  Google Scholar 

  • Lenz O, Elliot SJ, Stetler-Stevenson WG (2000) Matrix metalloproteinases in renal development and disease. J Am Soc Nephrol 11(3):574–581

    CAS  PubMed  Google Scholar 

  • Lewis NE et al (2010) Large-scale in silico modeling of metabolic interactions between cell types in the human brain. Nat Biotechnol 28(12):1279–1285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mardinoglu A, Gatto F, Nielsen J (2013) Genome-scale modeling of human metabolism–a systems biology approach. Biotechnol J 8(9):985–996

    Article  CAS  PubMed  Google Scholar 

  • Mardinoglu A et al (2014) Genome-scale metabolic modelling of hepatocytes reveals serine deficiency in patients with non-alcoholic fatty liver disease. Nat Commun 5:3083

    Article  PubMed  Google Scholar 

  • McCormick DB, Chen H (1999) Update on interconversions of vitamin B-6 with its coenzyme. J Nutr 129(2):325–327

    CAS  PubMed  Google Scholar 

  • McKusick VA (2007) Mendelian Inheritance in Man and its online version, OMIM. Am J Hum Genet 80(4):588–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merrill AH Jr, Henderson JM (1987) Diseases associated with defects in vitamin B6 metabolism or utilization. Annu Rev Nutr 7(1):137–156

    Article  CAS  PubMed  Google Scholar 

  • Milne CB et al (2009) Accomplishments in genome-scale in silico modeling for industrial and medical biotechnology. Biotechnol J 4(12):1653–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morham SG et al (1995) Prostaglandin synthase 2 gene disruption causes severe renal pathology in the mouse. Cell 83(3):473–482

    Article  CAS  PubMed  Google Scholar 

  • Nafar M et al (2014) The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int J Nephrol 2014:574261

    Article  PubMed  PubMed Central  Google Scholar 

  • Nishimura Y et al (1996) Synthesis and activity of 1-N-iminosugar inhibitors, siastatin B analogues for α-N-acetylgalactosaminidase and β-N-acetylglucosaminidase. Bioorg Med Chem 4(1):91–96

    Article  CAS  PubMed  Google Scholar 

  • Okamoto N et al (2007) Associations between renal sodium-citrate cotransporter (hNaDC-1) gene polymorphism and urinary citrate excretion in recurrent renal calcium stone formers and normal controls. Int J Urol 14(4):344–349

    Article  CAS  PubMed  Google Scholar 

  • Orth JD, Thiele I, Palsson BØ (2010) What is flux balance analysis? Nat Biotechnol 28(3):245–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rood IM, Deegens JK, Wetzels JF (2012) Genetic causes of focal segmental glomerulosclerosis: implications for clinical practice. Nephrol Dial Transpl 27(3):882–890

    Article  CAS  Google Scholar 

  • Ryu JY, Kim HU, Lee SY (2015) Reconstruction of genome-scale human metabolic models using omics data. Integr Biol 7(8):859–868

    Article  Google Scholar 

  • Schellenberger J, Palsson BØ (2009) Use of randomized sampling for analysis of metabolic networks. J Biol Chem 284(9):5457–5461

    Article  CAS  PubMed  Google Scholar 

  • Schellenberger J et al (2011) Quantitative prediction of cellular metabolism with constraint-based models: the COBRA Toolbox v2. 0. Nat Protoc 6(9):1290–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schiavon R et al (1994) Plasma glutathione peroxidase activity as an index of renal function. Clin Chem Lab Med 32(10):759–766

    Article  CAS  Google Scholar 

  • Shlomi T (2009) Metabolic network-based interpretation of gene expression data elucidates human cellular metabolism. Biotechnol Genet Eng Rev 26(1):281–296

    Article  Google Scholar 

  • Shlomi T et al (2008) Network-based prediction of human tissue-specific metabolism. Nat Biotechnol 26(9):1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Sindic A et al (2007) Renal physiology of SLC26 anion exchangers. Curr Opin Nephrol Hypertens 16(5):484–490

    Article  CAS  PubMed  Google Scholar 

  • Sugahara K et al (2003) Recent advances in the structural biology of chondroitin sulfate and dermatan sulfate. Curr Opin Struct Biol 13(5):612–620

    Article  CAS  PubMed  Google Scholar 

  • Swan SK et al (2000) Effect of cyclooxygenase-2 inhibition on renal function in elderly persons receiving a low-salt diet: a randomized, controlled trial. Ann Intern Med 133(1):1–9

    Article  CAS  PubMed  Google Scholar 

  • Tojo A (2013) The role of the kidney in protein metabolism: the capacity of tubular lysosomal proteolysis in nephrotic syndrome. Kidney Int 84(5):861–863

    Article  CAS  PubMed  Google Scholar 

  • Treberg JR et al (2010) Systemic activation of glutamate dehydrogenase increases renal ammoniagenesis: implications for the hyperinsulinism/hyperammonemia syndrome. Am J Physiol Endocrinol Metab 298(6):E1219–E1225

    Article  CAS  PubMed  Google Scholar 

  • Vinai M, Waber P, Seikaly MG (2010) Recurrence of focal segmental glomerulosclerosis in renal allograft: an in-depth review. Pediatr Transpl 14(3):314–325

    Article  CAS  Google Scholar 

  • Vo TD, Lee WP, Palsson BO (2007) Systems analysis of energy metabolism elucidates the affected respiratory chain complex in Leigh’s syndrome. Mol Genet Metab 91(1):15–22

    Article  CAS  PubMed  Google Scholar 

  • Woroniecka KI et al (2011) Transcriptome analysis of human diabetic kidney disease. Diabetes 60(9):2354–2369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yizhak K et al (2013) Model-based identification of drug targets that revert disrupted metabolism and its application to ageing. Nat Commun 4:2632

    Article  PubMed  Google Scholar 

  • Zachara BA et al (2006) Red blood cell and plasma glutathione peroxidase activities and selenium concentration in patients with chronic kidney disease: a review. Acta Biochim Pol 53(4):663–677

    CAS  PubMed  Google Scholar 

  • Zhang A-D, Dai S-X, Huang J-F (2013) Reconstruction and analysis of human kidney-specific metabolic network based on omics data. BioMed Res Int 2013:187509

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

S.-A. Marashi acknowledges the financial support of the University of Tehran for this research under Grant Number 28791/1/2. S. Kalantari thanks the Chronic Kidney Disease Research Center at Shahid Beheshti University of Medical Sciences, Tehran, Iran, for their support (Grant Number 426/30).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sayed-Amir Marashi or Shiva Kalantari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

335_2016_9622_MOESM1_ESM.xml

Supplementary material 1: The "merged" metabolic network. This kidney-specific genome-scale metabolic network model is presented in SBML format (XML 5098 kb)

Supplementary File S2: Some technical details on metabolic network analysis (PDF 437 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohrabi-Jahromi, S., Marashi, SA. & Kalantari, S. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm Genome 27, 158–167 (2016). https://doi.org/10.1007/s00335-016-9622-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-016-9622-2

Keywords

Navigation