Skip to main content
Log in

Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Obesity is a world-wide exponentially growing health problem that increases the risk of co-morbidities including metabolic syndrome, pre-diabetes, Type 2 Diabetes Mellitus (T2DM), and cancer. These co-morbidities are all complex conditions constituting a big challenge when searching for susceptibility genes. Identification of relevant genes, which could contribute to an earlier identification of individuals prone to develop diabetes, is urgently needed as many long-term complications can be avoided by preventive measures. Pre-diabetes is mainly associated with hyperglycemia; thus studying this phenotype might provide knowledge on relevant genes implicated in molecular mechanisms underlying pre-diabetes, and contributing to the development of T2DM. In the present study, two groups of pigs with high (HGG, N = 6) and low (NGG, N = 6) fasting plasma glucose level respectively were selected from a large pig population. Transcriptional levels of seven genes involved in the glucose transporter 4 (GLUT4) translocation pathway were studied by quantitative real-time PCR (qPCR) in diabetes relevant tissues (pancreas, adipose tissue, skeletal muscle, liver and kidney). Three of the genes, TBC (Tre-2, BUB2, CDC16) 1 Domain Family Member 4 (TBC1D4), insulin receptor and GLUT4 showed altered expression in some of the tissues. The expression pattern observed is in agreement with what has previously been reported in pre-diabetic humans confirming the pre-diabetic status of our pigs. Moreover, a novel isoform of TBC1D4 was detected by Western blotting using protein extracted from pancreas. The expression level of this novel isoform was further verified by qPCR in all tissues, showing the highest expression in the pancreas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersen CL, Jensen JL, Ørntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization applied to bladder and colon cancer data sets normalization of real-time quantitative reverse. Cancer Res 64:5245–5250. doi:10.1158/0008-5472.CAN-04-0496

    Article  CAS  PubMed  Google Scholar 

  • Bianchin F, Kaaks R, Vainio H (2002) Overweight, obesity, and cancer risk. Lancet Oncol 3(9):565–574

    Article  Google Scholar 

  • Bouzakri K, Ribaux P, Alejandra T, Parnaud G, Rickenbach K, Halban PA (2008) Rab GTPase-activating protein AS160 is a major downstream effector of protein kinase B/Akt signaling in pancreatic Β-cells. Apoptosis 57:1195–1204. doi:10.2337/db07-1469.P.R

    CAS  Google Scholar 

  • Butler AE, Juliette J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC (2003) Β-cell deficit and increased Β-cell apoptosis in humans with type 2. Diabetes 52:102–110

    Article  CAS  PubMed  Google Scholar 

  • Cirera S (2013) Highly efficient method for isolation of total RNA from adipose tissue. BMC Res Notes 6:472. doi:10.1186/1756-0500-6-472

    Article  PubMed Central  PubMed  Google Scholar 

  • De Meyts P, Palsgaard J, Sajid W, Theede AM, Aladdin H (2004) Structural biology of insulin and IGF-1 receptors. Novartis Found Symp 262:160–171. doi:10.1038/nrd917 (discussion 171–76, 265–68)

    Article  PubMed  Google Scholar 

  • Eguez L, Lee A, Chavez JA, Miinea CP, Kane S, Lienhard GE, McGraw TE (2005) Full intracellular retention of GLUT4 requires AS160 Rab GTPase activating protein. Cell Metab 2:263–272. doi:10.1016/j.cmet.2005.09.005

    Article  CAS  PubMed  Google Scholar 

  • Hoehn KL, Hohnen-Behrens C, Cederberg A, Wu LE, Turner N, Yuasa T, Ebina Y, James DE (2008) IRS1-independent defects define major nodes of insulin resistance. Cell Metab 7:421–433. doi:10.1016/j.cmet.2008.04.005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hribal M, Perego L, Lovari S, Andreozzi F, Menghini R, Perego C, Finzi G et al (2003) Chronic hyperglycemia impairs insulin secretion by affecting insulin receptor expression, splicing, and signaling in RIN beta cell line and human islets of langerhans. FASEB J 17:1340–1342. doi:10.1096/fj.02-0685fje

    CAS  PubMed  Google Scholar 

  • Imamura M, Maeda S (2011) Genetics of Type 2 diabetes: the GWAS era and future perspectives [review]. Endocr J 58(9):723–739. doi:10.1507/endocrj.EJ11-0113

    Article  CAS  PubMed  Google Scholar 

  • Kogelman LJA, Kadarmideen HN, Mark T, Karlskov-Mortensen P, Bruun CS, Cirera S, Jacobsen MJ, Jørgensen CB, Fredholm M (2013) An F2 pig resource population as a model for genetic studies of obesity and obesity-related diseases in humans: design and genetic parameters. Front Genet 4:1–14. doi:10.3389/fgene.2013.00029

    Article  CAS  Google Scholar 

  • Kulkarni RN, Brüning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR (1999) Tissue-specific knockout of the insulin receptor in pancreatic Β cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 96:329–339. doi:10.1016/S0092-8674(00)80546-2

    Article  CAS  PubMed  Google Scholar 

  • Larance M, Ramm G, Stöckli J, Van Dam E, Winata S, Wasinger V, Simpson F et al (2005) Characterization of the role of the Rab GTPase-activating protein AS160 in insulin-regulated GLUT4 trafficking. J Biol Chem 280:37803–37813. doi:10.1074/jbc.M503897200

    Article  CAS  PubMed  Google Scholar 

  • Leibiger B, Leibiger I, Moede T, Kemper S, Kulkarni R, Ronald Kahn C, Vargas L, Berggren P (2001) Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta Cells. Mol Cell 7:559–570. doi:10.1016/S1097-2765(01)00203-9

    Article  CAS  PubMed  Google Scholar 

  • Minokoshi Y, Ronald Kahn C, Kahn B (2003) Tissue-specific ablation of the GLUT4 glucose transporter or the insulin receptor challenges assumptions about insulin action and glucose homeostasis. J Biol Chem 278:33609–33612. doi:10.1074/jbc.R300019200

    Article  CAS  PubMed  Google Scholar 

  • Moltke I, Grarup N, Jørgensen M, Bjerregaard P, Treebak J, Fumagalli M, Korneliussen T et al (2014) A common greenlandic TBC1D4 variant confers muscle insulin resistance and type 2 diabetes. Nature. doi:10.1038/nature13425

    PubMed Central  Google Scholar 

  • Nygard A-B, Jørgensen C, Cirera S, Fredholm M (2007) Selection of reference genes for gene expression studies in pig tissues using SYBR green qPCR. BMC Mol Biol 8(January):67. doi:10.1186/1471-2199-8-67

    Article  PubMed Central  PubMed  Google Scholar 

  • Oliveira J, Rebuffat S, Gasa R, Gomis R (2014) Targeting type 2 diabetes: lessons from a Knockout model of insulin receptor substrate 2. NRP Res Press 620(June):613–620

    Google Scholar 

  • Pant SD, Karlskov-Mortensen P, Jacobsen MJ, Cirera S, Kogelman LJA, Bruun CS, Mark T, Jørgensen CB, Grarup N, Appel EVR, Galjatovic EAA, Hansen T, Pedersen O, Guerin M, Huby T, Lesnik P, Meuwissen THE, Kadarmideen HN, Fredholm M (in press) Comparative analyses of QTLs influencing obesity and metabolic phenotypes in pigs and humans. PLoS ONE

  • Postic C, Leturque A, Rencurel F, Printz R, Forest C, Granner D, Girard J (1993) The effects of hyperinsulinemia and hyperglycemia on GLUT4 and hexokinase II mRNA and protein in rat skeletal muscle and adipose tissue. Diabetes 42(June):922–929. doi:10.2337/diabetes.42.6.922

    Article  CAS  PubMed  Google Scholar 

  • Scott M, Grundy MD (2012) Pre-diabetes, metabolic syndrome, and cardiovascular risk. J Am Coll Cardiol 59(7):635–643. doi:10.1016/j.jacc.2011.08.080

    Article  Google Scholar 

  • Tan S-X, Ng Y, Burchfield JG, Ramm G, Lambright DG, Stockli J, James DE (2012) The RabGAP TBC1D4/AS160 Contains an atypical PTB domain that interacts with plasma membrane phospholipids to facilitate GLUT4 trafficking in adipocytes. Mol Cell Biol. doi:10.1128/MCB.00761-12

    Google Scholar 

  • Whittaker J, Sørensen H, Gadsbøll V, Hinrichsen J (2002) Comparison of the functional insulin binding epitopes of the A and B isoforms of the insulin receptor. J Biol Chem 277(49):47380–47384. doi:10.1074/jbc.M208371200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Christel Ammitzböll Halberg and Minna Jakobsen for their assistance with RNA isolation and DNase treatment. We would also like to thank all the people involved in the generation, phenotypic measurements, and slaughtering of the F2 pig population. This study was supported by The Danish Independent Research Council Grant Number DFF 1335-00127.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Cirera.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 48 kb)

Supplementary material 2 (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kristensen, T., Fredholm, M. & Cirera, S. Expression study of GLUT4 translocation-related genes in a porcine pre-diabetic model. Mamm Genome 26, 650–657 (2015). https://doi.org/10.1007/s00335-015-9601-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-015-9601-z

Keywords

Navigation