Skip to main content

Advertisement

Log in

Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The International Knockout Mouse Consortium (IKMC; http://www.mousephenotype.org) has generated mutations in almost every protein-coding mouse gene and is completing the companion Cre driver resource to expand tissue-specific conditional mutagenesis. Accordingly, the IKMC has carried out high-throughput gene trapping and targeting producing conditional mutations in murine embryonic stem cells in more than 18,500 genes, from which at least 4900 mutant mouse lines have been established to date. This resource is currently being upgraded with more powerful tools, such as visualization and manipulation cassettes that can be easily introduced into IKMC alleles for multifaceted functional studies. In addition, we discuss how existing IKMC products can be used in combination with CRISPR technology to accelerate genome engineering projects. All information and materials from this extraordinary biological resource together with coordinated phenotyping efforts can be retrieved at www.mousephenotype.org. The comprehensive IKMC knockout resource in combination with an extensive set of modular gene cassettes will continue to enhance functional gene annotation in the future and solidify its impact on biomedical research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Austin CP, Battey JF et al (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Auwerx J, Avner P et al (2004) The European dimension for the mouse genome mutagenesis program. Nat Genet 36:925–927

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bradley A, Anastassiadis K et al (2012) The mammalian gene function resource: the International Knockout Mouse Consortium. Mamm Genome 23:580–586

    Article  PubMed Central  PubMed  Google Scholar 

  • Capecchi MR (1989) The new mouse genetics: altering the genome by gene targeting. Trends Genet 5:70–76

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Rossant J et al (2007a) A mouse for all reasons. Cell 128:9–13

    Article  CAS  PubMed  Google Scholar 

  • Collins FS, Finnell RH et al (2007b) A new partner for the international knockout mouse consortium. Cell 129:235

    Article  CAS  PubMed  Google Scholar 

  • de Felipe P, Luke GA et al (2010) Inhibition of 2A-mediated ‘cleavage’ of certain artificial polyproteins bearing N-terminal signal sequences. Biotechnol J 5:213–223

    Article  PubMed Central  PubMed  Google Scholar 

  • de Angelis MH, Nicholson G (2015) Analysis of mammalian gene function through broad-based phenotypic screens across a consortium of mouse clinics. Nat Genet. doi:10.1038/ng.3360

    PubMed  Google Scholar 

  • Friedrich G, Soriano P (1991) Promoter traps in embryonic stem cells: a genetic screen to identify and mutate developmental genes in mice. Genes Dev 5:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Fu J, Bian X et al (2012) Full-length RecE enhances linear-linear homologous recombination and facilitates direct cloning for bioprospecting. Nat Biotechnol 30:440–446

    Article  CAS  PubMed  Google Scholar 

  • Gossler A, Joyner AL et al (1989) Mouse embryonic stem cells and reporter constructs to detect developmentally regulated genes. Science 244:463–465

    Article  CAS  PubMed  Google Scholar 

  • Horn C, Hansen J et al (2007) Splinkerette PCR for more efficient characterization of gene trap events. Nat Genet 39:933–934

    Article  CAS  PubMed  Google Scholar 

  • Jinek M, Chylinski K et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    Article  CAS  PubMed  Google Scholar 

  • Kranz A, Fu J et al (2010) An improved Flp deleter mouse in C57Bl/6 based on Flpo recombinase. Genesis 48(8):512–520

    Article  CAS  PubMed  Google Scholar 

  • Mendjan S, Mascetti VL et al (2014) NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell 15:310–325

    Article  CAS  PubMed  Google Scholar 

  • Nord AS, Vranizan K et al (2007) Modeling insertional mutagenesis using gene length and expression in murine embryonic stem cells. PLoS One 2:e617

    Article  PubMed Central  PubMed  Google Scholar 

  • Osterwalder M, Galli A et al (2010) Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 7:893–895

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patsch C, Kesseler D et al (2011) Genetic engineering of mammalian cells by direct delivery of FLP recombinase protein. Methods 53(4):386–393

    Article  CAS  PubMed  Google Scholar 

  • Pettitt SJ, Liang Q et al (2009) Agouti C57BL/6N embryonic stem cells for mouse genetic resources. Nat Methods 6:493–495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ringwald M, Iyer V et al (2011) The IKMC web portal: a central point of entry to data and resources from the International Knockout Mouse Consortium. Nucleic Acids Res 39:D849–D855

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ryder E, Doe B et al (2014) Rapid conversion of EUCOMM/KOMP-CSD alleles in mouse embryos using a cell-permeable Cre recombinase. Transgenic Res 23(1):177–185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schebelle L, Wolf C et al (2010) Efficient conditional and promoter-specific in vivo expression of cDNAs of choice by taking advantage of recombinase-mediated cassette exchange using FlEx gene traps. Nucleic Acids Res 38:e106

    Article  PubMed Central  PubMed  Google Scholar 

  • Schnutgen F, De-Zolt S et al (2005) Genomewide production of multipurpose alleles for the functional analysis of the mouse genome. Proc Natl Acad Sci USA 102:7221–7226

    Article  PubMed Central  PubMed  Google Scholar 

  • Skarnes WC, von Melchner H et al (2004) A public gene trap resource for mouse functional genomics. Nat Genet 36:543–544

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Skarnes WC, Rosen B et al (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474:337–342

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stribl C, Samara A et al (2014) Mitochondrial dysfunction and decrease in body weight of a transgenic knockin mouse model for TDP-43. J Biol Chem 289:10769–10784

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Testa G, Schaft J et al (2004) A reliable lacZ expression reporter cassette for multipurpose, knockout-first alleles. Genesis 38:151–158

    Article  CAS  PubMed  Google Scholar 

  • Townley DJ, Avery BJ et al (1997) Rapid sequence analysis of gene trap integrations to generate a resource of insertional mutations in mice. Genome Res 7:293–298

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela DM, Murphy AJ et al (2003) High-throughput engineering of the mouse genome coupled with high-resolution expression analysis. Nat Biotechnol 21:652–659

    Article  CAS  PubMed  Google Scholar 

  • White JK, Gerdin AK et al (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154(2):452–464

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiles MV, Vauti F et al (2000) Establishment of a gene-trap sequence tag library to generate mutant mice from embryonic stem cells. Nat Genet 24:13–14

    Article  CAS  PubMed  Google Scholar 

  • Wurst W, Rossant J et al (1995) A large-scale gene-trap screen for insertional mutations in developmentally regulated genes in mice. Genetics 139:889–899

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The authors thank all members of EUCOMM/EUCOMMTOOLS, IKMC, EUMODIC, and the IMPC for their dedicated hard work and constant support in establishing this comprehensive resource. We in particular thank Vivek Iyer, Joachim Beig, and Jens Hansen for bioinformatics data analysis and Cornelia Kaloff, Laura Schwabe, and Derek Matthews for coordination support. The authors are supported by EUCOMM and EUCOMMTOOLS projects which are funded by the European Commission [LSHG-CT-2005-018931 and FP7-HEALTH-F4-2010-261492].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Wurst.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rosen, B., Schick, J. & Wurst, W. Beyond knockouts: the International Knockout Mouse Consortium delivers modular and evolving tools for investigating mammalian genes. Mamm Genome 26, 456–466 (2015). https://doi.org/10.1007/s00335-015-9598-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-015-9598-3

Keywords

Navigation