NIG_MoG: a mouse genome navigator for exploring intersubspecific genetic polymorphisms

Abstract

The National Institute of Genetics Mouse Genome database (NIG_MoG; http://molossinus.lab.nig.ac.jp/msmdb/) primarily comprises the whole-genome sequence data of two inbred mouse strains, MSM/Ms and JF1/Ms. These strains were established at NIG and originated from the Japanese subspecies Mus musculus molossinus. NIG_MoG provides visualized genome polymorphism information, browsing single-nucleotide polymorphisms and short insertions and deletions in the genomes of MSM/Ms and JF1/Ms with respect to C57BL/6J (whose genome is predominantly derived from the West European subspecies M. m. domesticus). This allows users, especially wet-lab biologists, to intuitively recognize intersubspecific genome divergence in these mouse strains using visual data. The database also supports the in silico screening of bacterial artificial chromosome (BAC) clones that contain genomic DNA from MSM/Ms and the standard classical laboratory strain C57BL/6N. NIG_MoG is thus a valuable navigator for exploring mouse genome polymorphisms and BAC clones that are useful for studies of gene function and regulation based on intersubspecific genome divergence.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abe K, Noguchi H, Tagawa K, Yuzuriha M, Toyoda A, Kojima T, Ezawa K, Saitou N, Hattori M, Sakaki Y et al (2004) Contribution of Asian mouse subspecies Mus musculus molossinus to genomic constitution of strain C57BL/6J, as defined by BAC-end sequence-SNP analysis. Genome Res 14:2439–2447

    PubMed Central  Article  PubMed  Google Scholar 

  2. Bonhomme F, Miyashita N, Boursot P, Catalan J, Moriwaki K (1989) Genetical variation and polyphyletic origin in Japanese Mus musculus. Heredity 63:299–308

    Article  PubMed  Google Scholar 

  3. Keane TH, Goodstadt L, Danecek P, Payseur B, White MA, Yalcin B, Heger A, Agam A, Slater G, Goodson M et al (2011) Sequence variants among 17 mouse genomes: effect on phenotypes and gene regulation. Nature 477:289–294

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  4. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    PubMed Central  Article  PubMed  Google Scholar 

  5. Moriwaki K (1994) Wild mouse from geneticist”s viewpoint. In: Moriwaki K (ed) Genetics in wild mice: its application to biomedical research. Japan Scientific Press/Karger, Tokyo, pp xiii–xxiv

    Google Scholar 

  6. Moriwaki K, Miyashita N, Mita A, Gotoh H, Tsuchiya K, Kato H, Mekada K, Noro C, Oota S, Yoshiki A et al (2009) Unique inbred strain MSM/Ms established from the Japanese wild mouse. Exp Anim 58:123–134

    CAS  Article  PubMed  Google Scholar 

  7. Mouse Genome Sequencing Consortium (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  Google Scholar 

  8. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  9. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, Sirotkin K (2001) dbSNP: the NCBI database of genetic variation. Nucleic Acids Res 29:308–311

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  10. Silver LM (1995) Mouse genetics: concepts and applications. Oxford University Press, New York

    Google Scholar 

  11. Takada T, Shiroishi T (2012) Complex quantitative traits cracked by the mouse inter-subspecific consomic strains. Exp Anim 61:375–388

    CAS  Article  PubMed  Google Scholar 

  12. Takada T, Mita A, Maeno A, Sakai T, Shitara H, Kikkawa Y, Moriwaki K, Yonekawa H, Shiroishi T (2008) Mouse inter-subspecific consomic strains for genetic dissection of quantitative complex traits. Genome Res 18:500–508

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  13. Takada T, Ebata T, Noguchi H, Keane TM, Adams DJ, Narita T, Shin-i T, Fujisawa H, Toyoda A, Abe K et al (2013) The ancestor of extant Japanese fancy mice contributed to the mosaic genomes of classical inbred strains. Genome Res 23:1329–1338

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  14. The International Mouse Knockout Consortium (2007) A mouse for all reasons. Cell 128:9–13

    Article  Google Scholar 

  15. Wong K, Bumpstead S, Van Der Weyden L, Reinholdt LG, Wilming LG, Adams DJ, Keane TM (2012) Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 13:R72

    PubMed Central  Article  PubMed  Google Scholar 

  16. Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH, Nachman NW, Pialek J et al (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    PubMed Central  CAS  Article  PubMed  Google Scholar 

  17. Yonekawa H, Moriwaki K, Gotoh O, Watanabe J, Hayashi J-I, Miyashita N, Petras ML, Tagashira Y (1980) Relationship between laboratory mice and the subspecies Mus musculus domesticus based on restriction endonuclease cleavage patterns of mitochondrial DNA. Japan J Genet 55:289–296

    Article  Google Scholar 

  18. Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Matsushima Y, Liming S, Cho WS, Xiao-Lan Z, Tagashira Y (1988) Hybrid origin of Japanese mice: “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol Biol Evol 5:63–78

    CAS  PubMed  Google Scholar 

  19. Yoshiki A, Moriwaki K (2006) Mouse phenome research: implications of genetic background. ILAR J 47:94–102

    CAS  Article  PubMed  Google Scholar 

  20. Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences. J Comput Biol 7:203–214

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Y. Kohara, T. Ebata and members of the Genetic Informatics Laboratory of NIG for the development and maintenance of NIG_MoG. This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas in “Comparative Genomics” and by the National BioResource Projects of “the Genome Information Upgrading Program” of the Ministry of Education, Culture, Sports, Science and Technology of Japan. This work was also supported in part by the Biodiversity Research Project of the Transdisciplinary Research Integration Center, Research Organization of Information and Systems. This study is contribution No. 2517 at NIG.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Toyoyuki Takada or Toshihiko Shiroishi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Takada, T., Yoshiki, A., Obata, Y. et al. NIG_MoG: a mouse genome navigator for exploring intersubspecific genetic polymorphisms. Mamm Genome 26, 331–337 (2015). https://doi.org/10.1007/s00335-015-9569-8

Download citation

Keywords

  • Bacterial Artificial Chromosome
  • Inbred Strain
  • Bacterial Artificial Chromosome Clone
  • Bacterial Artificial Chromosome Library
  • Consomic Strain