Skip to main content

Advertisement

Log in

A review of standardized metabolic phenotyping of animal models

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Metabolic phenotyping of genetically modified animals aims to detect new candidate genes and related metabolic pathways that result in dysfunctional energy balance regulation and predispose for diseases such as obesity or type 2 diabetes mellitus. In this review, we provide a comprehensive overview on the technologies available to monitor energy flux (food uptake, bomb calorimetry of feces and food, and indirect calorimetry) and body composition (qNMR, DXA, and MRI) in animal models for human diseases with a special focus on phenotyping methods established in genetically engineered mice. We use an energy flux model to illustrate the principles of energy allocation, describe methodological aspects how to monitor energy balance, and introduce strategies for data analysis and presentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Andersson EA, Allin KH, Sandholt CH, Borglykke A, Lau CJ, Ribel-Madsen R, Sparsø T, Justesen JM, Harder MN, Jørgensen ME (2013) Genetic risk score of 46 type 2 diabetes risk variants associates with changes in plasma glucose and estimates of pancreatic β-cell function over 5 years of follow-up. Diabetes 62:3610–3617

    Article  PubMed  CAS  Google Scholar 

  • Arch JR, Hislop D, Wang SJ, Speakman JR (2006) Some mathematical and technical issues in the measurement and interpretation of open-circuit indirect calorimetry in small animals. Int J Obes (Lond) 30:1322–1331

    Article  CAS  Google Scholar 

  • Ashrafi K, Chang FY, Watts JL, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) Genome-wide RNAi analysis of Caenorhabditis elegans fat regulatory genes. Nature 421:268–272

    Article  PubMed  CAS  Google Scholar 

  • Beckers J, Wurst W, de Angelis MH (2009) Towards better mouse models: enhanced genotypes, systemic phenotyping and envirotype modelling. Nat Rev Genet 10:371–380

    Article  PubMed  CAS  Google Scholar 

  • Brown SD, Moore MW (2012) Towards an encyclopaedia of mammalian gene function: the International Mouse Phenotyping Consortium. Dis Models Mech 5:289–292

    Article  CAS  Google Scholar 

  • Buescher JL, Musselman LP, Wilson CA, Lang T, Keleher M, Baranski TJ, Duncan JG (2013) Evidence for transgenerational metabolic programming in Drosophila. Dis Models Mech 6:1123–1132

  • Caldwell FT, Hammel HT, Dolan F (1966) A calorimeter for simultaneous determination of heat production and heat loss in the rat. J Appl Physiol 21:1665–1671

    PubMed  CAS  Google Scholar 

  • Callejas D, Mann CJ, Ayuso E, Lage R, Grifoll I, Roca C, Andaluz A, Ruiz-de Gopegui R, Montane J, Munoz S, Ferre T, Haurigot V, Zhou S, Ruberte J, Mingozzi F, High KA, Garcia F, Bosch F (2013) Treatment of diabetes and long-term survival after insulin and glucokinase gene therapy. Diabetes 62:1718–1729

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Caro JF, Sinha MK, Kolaczynski JW, Zhang PL, Considine RV (1996) Leptin: the tale of an obesity gene. Diabetes 45:1455–1462

    Article  PubMed  CAS  Google Scholar 

  • Christoffersen B, Golozoubova V, Pacini G, Svendsen O, Raun K (2012) The young göttingen minipig as a model of childhood and adolescent obesity: influence of diet and gender. Obesity 21(1):149–158

  • Costa RR, Villela NR, Souza MdGC, Boa B, Cyrino FZ, Silva SV, Lisboa PC, Moura EG, Barja-Fidalgo TC, Bouskela E (2011) High fat diet induces central obesity, insulin resistance and microvascular dysfunction in hamsters. Microvasc Res 82:416–422

    Article  PubMed  CAS  Google Scholar 

  • Dahlhoff M, Pfister S, Blutke A, Rozman J, Klingenspor M, Deutsch M, Rathkolb B, Fink B, Gimpfl M, Hrabě de Angelis M (2014) Peri-conceptional obesogenic exposure induces sex-specific programming of disease susceptibilities in adult mouse offspring. Biochim Biophy Acta (BBA)-Mol Basis Dis 1842:304–317

    Article  CAS  Google Scholar 

  • Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A (2014) High-fat diet alters gut microbiota physiology in mice. ISME J 8:295–308

    Article  PubMed  CAS  Google Scholar 

  • Dobush GR, Ankney CD, Krementz DG (1985) The effect of apparatus, extraction time, and solvent type on lipid extractions of snow geese. Can J Zool 63:1917–1920

    Article  CAS  Google Scholar 

  • Elvert R, Wille A, Wandschneider J, Werner U, Glombik H, Herling AW (2013) Energy loss via urine and faeces—a combustive analysis in diabetic rats and the impact of antidiabetic treatment on body weight. Diabetes Obes Metab 15:324–334

    Article  PubMed  CAS  Google Scholar 

  • Even PC, Nadkarni NA (2012) Indirect calorimetry in laboratory mice and rats: principles, practical considerations, interpretation and perspectives. Am J Physiol Regul Integr Comp Physiol 303:R459–R476

    Article  PubMed  CAS  Google Scholar 

  • Ferrannini E (1988) The theoretical bases of indirect calorimetry: a review. Metab Clin Exp 37:287–301

    Article  PubMed  CAS  Google Scholar 

  • Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country-years and 9·1 million participants. Lancet 377:557–567

    Article  PubMed  Google Scholar 

  • Frayn KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55:628–634

    PubMed  CAS  Google Scholar 

  • Gailus-Durner V, Fuchs H, Becker L, Bolle I, Brielmeier M, Calzada-Wack J, Elvert R, Ehrhardt N, Dalke C, Franz TJ (2005) Introducing the German Mouse Clinic: open access platform for standardized phenotyping. Nat Methods 2:403–404

    Article  PubMed  CAS  Google Scholar 

  • Gailus-Durner V, Naton B, Adler T, Afonso L, Aguilar-Pimentel JA, Becker L, Calzada-Wack J, Cohrs C, da Silva-Buttkus P, Hans W (2011) The German Mouse Clinic—running an open access platform. In: Brakebusch TPC (ed) Mouse as a model organism. Springer, Berlin, pp 11–44

    Chapter  Google Scholar 

  • Galgani J, Ravussin E (2008) Energy metabolism, fuel selection and body weight regulation. Int J Obes (Lond) 32(Suppl 7):S109–S119

    Article  CAS  Google Scholar 

  • Galgani JE, Moro C, Ravussin E (2008) Metabolic flexibility and insulin resistance. American journal of physiology. Endocrinol Metab 295:E1009–E1017

    CAS  Google Scholar 

  • Grimpo K, Voelker MN, Heppe EN, Braun S, Heverhagen JT, Heldmaier G (2014) Brown adipose tissue dynamics in wild-type and UCP1-knockout mice: in vivo insights with magnetic resonance. J Lipid Res 55:398–409

    Article  PubMed  CAS  Google Scholar 

  • Hall KD (2006) Computational model of in vivo human energy metabolism during semi-starvation and re-feeding. Am J Physiol Endocrinol Metab 291:E23

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hall KD, Sacks G, Chandramohan D, Chow CC, Wang YC, Gortmaker SL, Swinburn BA (2011) Quantification of the effect of energy imbalance on bodyweight. Lancet 378:826–837

    Article  PubMed  Google Scholar 

  • Hedman ÅK, Lindgren CM, McCarthy MI (2014) Genome-wide association studies of obesity. In: The genetics of obesity, Springer, Berlin, pp 33–53

  • Hillebrand JJ, Langhans W, Geary N (2010) Validation of computed tomographic estimates of intra-abdominal and subcutaneous adipose tissue in rats and mice. Obesity 18:848–853

    Article  PubMed  Google Scholar 

  • Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, Collins JE, Humphray S, McLaren K, Matthews L (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kaiyala KJ, Ramsay DS (2011) Direct animal calorimetry, the underused gold standard for quantifying the fire of life. Comp Biochem Physiol A 158:252–264

    Article  Google Scholar 

  • Kaiyala KJ, Morton GJ, Leroux BG, Ogimoto K, Wisse B, Schwartz MW (2010) Identification of body fat mass as a major determinant of metabolic rate in mice. Diabetes 59:1657–1666

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Karasov WH (1982) Energy assimilation, nitrogen requirement, and diet in free-living antelope ground squirrels Ammospermophilus leucurus. Physiol Zool 55:378–392

    Google Scholar 

  • Karasov WH, Petrossian E, Rosenberg L, Diamond JM (1986) How do food passage rate and assimilation differ between herbivorous lizards and nonruminant mammals? J Comp Physiol B 156:599–609

    Article  PubMed  CAS  Google Scholar 

  • Kerr DC, Ankney CD, Millar JS (1982) The effect of drying temperature on extraction of petroleum ether soluble fats of small birds and mammals. Can J Zool 60:470–472

    Article  Google Scholar 

  • Kirkwood JK (1983) Minireview. A limit to metabolisable energy intake in mammals and birds. Comp Biochem Physiol A 75:1–3

    Article  PubMed  CAS  Google Scholar 

  • Kistler M, Szymczak W, Fedrigo M, Fiamoncini J, Höllriegl V, Hoeschen C, Klingenspor M, de Angelis MH, Rozman J (2014) Effects of diet-matrix on volatile organic compounds in breath in diet-induced obese mice. J Breath Res 8:016004

    Article  PubMed  CAS  Google Scholar 

  • Kleiber M (1961) The fire of life. An introduction to animal energetics. John Wiley & Sons, Inc., New York, London

  • Klingenspor M, Niggemann H, Heldmaier G (2000) Modulation of leptin sensitivity by short photoperiod acclimation in the Djungarian hamster, Phodopus sungorus. J Comp Physiol B 170:37–43

    Article  PubMed  CAS  Google Scholar 

  • Kolodziejczak D, Spanier B, Pais R, Kraiczy J, Stelzl T, Gedrich K, Scherling C, Zietek T, Daniel H (2013) Mice lacking the intestinal peptide transporter display reduced energy intake and a subtle maldigestion/malabsorption that protects them from diet-induced obesity. Am J Physiol Gastrointest Liver Physiol 304:G897–G907

    Article  PubMed  CAS  Google Scholar 

  • Koscielny G, Yaikhom G, Iyer V, Meehan TF, Morgan H, Atienza-Herrero J, Blake A, Chen CK, Easty R, Di Fenza A, Fiegel T, Grifiths M, Horne A, Karp NA, Kurbatova N, Mason JC, Matthews P, Oakley DJ, Qazi A, Regnart J, Retha A, Santos LA, Sneddon DJ, Warren J, Westerberg H, Wilson RJ, Melvin DG, Smedley D, Brown SD, Flicek P, Skarnes WC, Mallon AM, Parkinson H (2014) The International Mouse Phenotyping Consortium Web Portal, a unified point of access for knockout mice and related phenotyping data. Nucleic Acids Res 42:D802–D809

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kremer RL (1990) Thermodynamics of life and experimental physiology, 1770–1880. Garland Pub., New York

    Google Scholar 

  • Laughlin MR, Lloyd KC, Cline GW, Wasserman DH (2012) NIH Mouse Metabolic Phenotyping Centers: the power of centralized phenotyping. Mamm Genome Off J Int Mamm Genome Soc 23:623–631

    Article  CAS  Google Scholar 

  • Lighton JR (2008) Measuring metabolic rates: a manual for scientists. Oxford University Press, Oxford

    Book  Google Scholar 

  • Lubura M, Hesse D, Neumann N, Scherneck S, Wiedmer P, Schurmann A (2012) Non-invasive quantification of white and brown adipose tissues and liver fat content by computed tomography in mice. PLoS ONE 7:e37026

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maier H, Lengger C, Simic B, Fuchs H, Gailus-Durner V, de Angelis MH (2008) MausDB: an open source application for phenotype data and mouse colony management in large-scale mouse phenotyping projects. BMC Bioinf 9:169

    Article  Google Scholar 

  • Mann DR, Akinbami MA, Gould KG, Castracane VD (2000) A longitudinal study of leptin during development in the male rhesus monkey: the effect of body composition and season on circulating leptin levels. Biol Reprod 62:285–291

    Article  PubMed  CAS  Google Scholar 

  • McCurdy CE, Bishop JM, Williams SM, Grayson BE, Smith MS, Friedman JE, Grove KL (2009) Maternal high-fat diet triggers lipotoxicity in the fetal livers of nonhuman primates. J Clin Investig 119:323

    PubMed  CAS  PubMed Central  Google Scholar 

  • McGuinness OP, Ayala JE, Laughlin MR, Wasserman DH (2009) NIH experiment in centralized mouse phenotyping: the Vanderbilt experience and recommendations for evaluating glucose homeostasis in the mouse. Am J Physiol Endocrinol Metab 297:E849–E855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mitchell AD (2011) Validation of quantitative magnetic resonance body composition analysis for infants using piglet model. Pediatr Res 69:330–335

    Article  PubMed  Google Scholar 

  • Murphy M, Jethwa PH, Warner A, Barrett P, Nilaweera KN, Brameld JM, Ebling FJ (2011) Effects of manipulating hypothalamic triiodothyronine concentrations on seasonal body weight and torpor cycles in Siberian hamsters. Endocrinology 153:101–112

    Article  PubMed  Google Scholar 

  • Mystkowski P, Shankland E, Schreyer S, LeBoeuf R, Schwartz R, Cummings D, Kushmerick M, Schwartz M (2000) Validation of whole-body magnetic resonance spectroscopy as a tool to assess murine body composition. Int J Obes Relat Metab Disord 24:719–724

    Article  PubMed  CAS  Google Scholar 

  • Olszewski PK, Rozman J, Jacobsson JA, Rathkolb B, Stromberg S, Hans W, Klockars A, Alsio J, Riserus U, Becker L, Holter SM, Elvert R, Ehrhardt N, Gailus-Durner V, Fuchs H, Fredriksson R, Wolf E, Klopstock T, Wurst W, Levine AS, Marcus C, de Angelis MH, Klingenspor M, Schioth HB, Kilimann MW (2012) Neurobeachin, a regulator of synaptic protein targeting, is associated with body fat mass and feeding behavior in mice and body-mass index in humans. PLoS Genet 8:e1002568

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Packard GC, Boardman TJ (1999) The use of percentages and size-specific indices to normalize physiological data for variation in body size: wasted time, wasted effort? Comp Biochem Physiol A 122:37–44

    Article  Google Scholar 

  • Panchal SK, Brown L (2011) Rodent models for metabolic syndrome research. J Biomed Biotechnol. doi:10.1155/2011/351982

  • Ramsey JJ, Colman RJ, Swick AG, Kemnitz JW (1998) Energy expenditure, body composition, and glucose metabolism in lean and obese rhesus monkeys treated with ephedrine and caffeine. Am J Clin Nutr 68:42–51

    PubMed  CAS  Google Scholar 

  • Reed DR, Lawler MP, Tordoff MG (2008) Reduced body weight is a common effect of gene knockout in mice. BMC Genet 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Reynolds D, Kunz T (2001) Standard methods for destructive body composition analysis. Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge, pp 39–55

    Book  Google Scholar 

  • Secor SM (2009) Specific dynamic action: a review of the postprandial metabolic response. J Comp Physiol B 179:1–56

    Article  PubMed  Google Scholar 

  • Seth A, Stemple DL, Barroso I (2013) The emerging use of zebrafish to model metabolic disease. Dis Models Mech 6:1080–1088

    Article  CAS  Google Scholar 

  • Simonson DC, DeFronzo RA (1990) Indirect calorimetry: methodological and interpretative problems. Am J Physiol 258:E399–E412

    PubMed  CAS  Google Scholar 

  • Speakman JR (2001) Body composition analysis of animals: a handbook of non-destructive methods. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Speakman JR (2010) FTO effect on energy demand versus food intake. Nature 464:E1; discussion E2

  • Speakman JR (2013) Measuring energy metabolism in the mouse—theoretical, practical, and analytical considerations. Front Physiol 4:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Speakman J, Hambly C, Mitchell S, Krol E (2007) Animal models of obesity. Obes Rev Off J Int Assoc Study Obes 8(Suppl 1):55–61

    Article  Google Scholar 

  • Speakman J, Hambly C, Mitchell S, Krol E (2008) The contribution of animal models to the study of obesity. Lab Anim 42:413–432

    Article  PubMed  CAS  Google Scholar 

  • Speakman JR, Fletcher Q, Vaanholt L (2013) The ‘39 steps’: an algorithm for performing statistical analysis of data on energy intake and expenditure. Dis Models Mech 6:293–301

    Article  Google Scholar 

  • Spurlock ME, Gabler NK (2008) The development of porcine models of obesity and the metabolic syndrome. J Nutr 138:397–402

    PubMed  CAS  Google Scholar 

  • Szwergold BS, Miller CB (2013) Potential of birds to serve as a pathology-free model of Type 2 Diabetes, 1: is the apparent absence of the RAGE gene a factor in the resistance of avian organisms to chronic hyperglycemia? Rejuvenation Res 17(1):54–61

    Article  Google Scholar 

  • Tilg H, Kaser A (2011) Gut microbiome, obesity, and metabolic dysfunction. J Clin Investig 121:2126

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Tocchetti A, Soppo CB, Zani F, Bianchi F, Gagliani MC, Pozzi B, Rozman J, Elvert R, Ehrhardt N, Rathkolb B, Moerth C, Horsch M, Fuchs H, Gailus-Durner V, Beckers J, Klingenspor M, Wolf E, Hrabe de Angelis M, Scanziani E, Tacchetti C, Scita G, Di Fiore PP, Offenhauser N (2010) Loss of the actin remodeler Eps8 causes intestinal defects and improved metabolic status in mice. PLoS ONE 5:e9468

    Article  PubMed  PubMed Central  Google Scholar 

  • Tschop MH, Speakman JR, Arch JR, Auwerx J, Bruning JC, Chan L, Eckel RH, Farese RV Jr, Galgani JE, Hambly C, Herman MA, Horvath TL, Kahn BB, Kozma SC, Maratos-Flier E, Muller TD, Munzberg H, Pfluger PT, Plum L, Reitman ML, Rahmouni K, Shulman GI, Thomas G, Kahn CR, Ravussin E (2012) A guide to analysis of mouse energy metabolism. Nat Methods 9:57–63

    Article  Google Scholar 

  • Varga O, Harangi M, Olsson I, Hansen AK (2010) Contribution of animal models to the understanding of the metabolic syndrome: a systematic overview. Obes Rev 11:792–807

    Article  PubMed  CAS  Google Scholar 

  • von Erlach CL (1846) Versuche über die Perspiration einiger mit Lungen athmender Wirbelthiere: Dissertation zur Erlangung des Doctorgrades. (Hallersche Buchdruckerei)

  • Walsberg GE, Hoffman TC (2005) Direct calorimetry reveals large errors in respirometric estimates of energy expenditure. J Exp Biol 208:1035–1043

    Article  PubMed  Google Scholar 

  • Weiner J (1992) Physiological limits to sustainable energy budgets in birds and mammals: ecological implications. Trends Ecol Evol 7:384–388

    Article  PubMed  CAS  Google Scholar 

  • Wolf E, Braun-Reichhart C, Streckel E, Renner S (2014) Genetically engineered pig models for diabetes research. Transgenic Res 23:27–38

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ann-Elisabeth Schwarz, Brigitte Herrmann, Nicole Ehrhardt, Monja Willershäuser, and Martin Kistler for their support in setting up the energy metabolism screen in the GMC. This work was funded by the German Federal Ministry of Education and Research to the German Center for Diabetes Research (DZD e.V.) and to the GMC (Infrafrontier Grant No. 01KX1012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Rozman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rozman, J., Klingenspor, M. & Hrabě de Angelis, M. A review of standardized metabolic phenotyping of animal models. Mamm Genome 25, 497–507 (2014). https://doi.org/10.1007/s00335-014-9532-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9532-0

Keywords

Navigation