Skip to main content
Log in

Body composition in gene knockouts of sulfur amino acid-metabolizing enzymes

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Plasma concentrations of several amino acids are elevated in human obesity and insulin resistance, but there is no conclusive evidence on whether the amino acid alterations are causal. Dietary restriction of the essential SAA methionine (MR) in rats produces a hypermetabolic phenotype, with an integrated set of transcriptional changes in lipid enzymes in liver and adipose tissue. MR also induces an array of changes in methionine metabolites, including elevated plasma homocysteine and decreased cystathionine, cysteine, glutathione, and taurine. Several knockouts of enzymes acting downstream of methionine recapitulate the phenotypic results of MR, suggesting that the MR phenotype may be driven by changes distal to methionine. Here we review the changes in SAA and body composition in seven relevant knockout mouse models. All seven models feature decreased body weight, which in five of these have been further explored and shown to result from predominantly decreased fat mass. Common to several models is increased energy expenditure, enhanced insulin sensitivity, and protection against dietary obesity, as occurs in MR. A decrease in plasma total cysteine concentrations is also seen in most models. The lean phenotype could often be reversed by dietary supplementation of cysteine or choline, but not taurine, betaine or a H2S donor. Importantly, the plasma concentrations of both cysteine and choline are positively associated with fat mass in large populations studies, while taurine, betaine, and H2S are not. Collectively, the emerging data from dietary and knockout models are in harmony with human epidemiologic data, suggesting that the availability of key nutrients in the SAA pathway regulates fat storage pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Akahoshi N, Kobayashi C, Ishizaki Y, Izumi T, Himi T, Suematsu M, Ishii I (2008) Genetic background conversion ameliorates semi-lethality and permits behavioral analyses in cystathionine β-synthase-deficient mice, an animal model for hyperhomocysteinemia. Hum Mol Genet 17(13):1994–2005

    Article  PubMed  CAS  Google Scholar 

  • Auwerx J, Cock TA, Knouff C (2003) PPAR-gamma: a thrifty transcription factor. Nucl Recept Signal 1:e006

    Article  PubMed  PubMed Central  Google Scholar 

  • Bauer M, Hamm AC, Bonaus M, Jacob A, Jaekel J, Schorle H, Pankratz MJ, Katzenberger JD (2004) Starvation response in mouse liver shows strong correlation with life-span-prolonging processes. Physiol Genomics 17(2):44–230

    Article  Google Scholar 

  • Brosnan JT, Brosnan ME (2006) The sulfur-containing amino acids: an overview. J Nutr 136(6 Suppl):40S–1636S

    Google Scholar 

  • Crunk AE, Monks J, Murakami A, Jackman M, Maclean PS, Ladinsky M, Bales ES, Cain S, Orlicky DJ, McManaman JL (2013) Dynamic regulation of hepatic lipid droplet properties by diet. PLoS One 8(7):e67631

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Di Renzo L, Galvano F, Orlandi C, Bianchi A, Di Giacomo C, La Fauci L, Acquaviva R, De Lorenzo A (2010) Oxidative stress in normal-weight obese syndrome. Obesity (Silver Spring) 18(11):30–2125

    Article  Google Scholar 

  • Elshorbagy AK, Nurk E, Gjesdal CG, Tell GS, Ueland PM, Nygard O, Tverdal A, Vollset SE, Refsum H (2008) Homocysteine, cysteine, and body composition in the Hordaland Homocysteine Study: does cysteine link amino acid and lipid metabolism? Am J Clin Nutr 88(3):46–738

    Google Scholar 

  • Elshorbagy AK, Refsum H, Smith AD, Graham IM (2009) The association of plasma cysteine and gamma-glutamyltransferase with BMI and obesity. Obesity (Silver Spring) 17(7):40–1435

    Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Refsum H, Smith AD, Mattocks DA, Perrone CE (2010) Sulfur amino acids in methionine-restricted rats: hyperhomocysteinemia. Nutrition 26(11–12):4–1201

    Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Smith AD, Drevon CA, Refsum H, Perrone CE (2011) Cysteine supplementation reverses methionine restriction effects on rat adiposity: significance of stearoyl-coenzyme A desaturase. J Lipid Res 52(1):12–104

    Article  Google Scholar 

  • Elshorbagy AK, Kozich V, Smith AD, Refsum H (2012a) Cysteine and obesity: consistency of the evidence across epidemiologic, animal and cellular studies. Curr Opin Clin Nutr Metab Care 15(1):49–57

    Article  PubMed  CAS  Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Refsum H, Butte N (2012b) The association of cysteine with obesity, inflammatory cytokines and insulin resistance in Hispanic children and adolescents. PLoS One 7(9):e44166

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Graham IM, Palma Reis R, Sales Luis A, Smith AD, Refsum H (2012c) The association of fasting plasma sulfur-containing compounds with BMI, serum lipids and apolipoproteins. Nutr Metab Cardiovasc Dis 22(12):8–1031

    Article  Google Scholar 

  • Elshorbagy AK, Church C, Valdivia-Garcia M, Smith AD, Refsum H, Cox R (2012d) Dietary cystine level affects metabolic rate and glycaemic control in adult mice. J Nutr Biochem 23(4):40–332

    Article  Google Scholar 

  • Elshorbagy AK, Nijpels G, Valdivia-Garcia M, Stehouwer CD, Ocke M, Refsum H, Dekker JM (2013a) S-adenosylmethionine is associated with fat mass and truncal adiposity in older adults. J Nutr 143(12):8–1982

    Article  Google Scholar 

  • Elshorbagy AK, Valdivia-Garcia M, Mattocks DA, Plummer JD, Orentreich DS, Orentreich N, Refsum H, Perrone CE (2013b) Effect of taurine and N-acetylcysteine on methionine restriction-mediated adiposity resistance. Metabolism 62(4):17–509

    Article  Google Scholar 

  • Floegel A, Stefan N, Yu Z, Muhlenbruch K, Drogan D, Joost HG, Fritsche A, Haring HU, Hrabe de Angelis M, Peters A et al (2013) Identification of serum metabolites associated with risk of type 2 diabetes using a targeted metabolomic approach. Diabetes 62(2):639–648

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Flowers MT, Ade L, Strable MS, Ntambi JM (2012) Combined deletion of SCD1 from adipose tissue and liver does not protect mice from obesity. J Lipid Res 53(8):53–1646

    Article  Google Scholar 

  • Go YM, Jones DP (2011) Cysteine/cystine redox signaling in cardiovascular disease. Free Radic Biol Med 50(4):495–509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta S, Kruger WD (2011) Cystathionine beta-synthase deficiency causes fat loss in mice. PLoS One 6(11):e27598

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gupta S, Melnyk SB, Kruger WD (2014) Cystathionine beta-synthase-deficient mice thrive on a low-methionine diet. FASEB J 28(2):90–781

    Article  Google Scholar 

  • Haj-Yasein NN, Dalen KT, Berg O, Bastani N, Refsum H, Nebb HI (2013) Low cysteine interferes with PPARγ activity and reduces adipocyte differentiation. J Inherit Metab Dis 36(Suppl. 1):973

    Google Scholar 

  • Haque JA, McMahan RS, Campbell JS, Shimizu-Albergine M, Wilson AM, Botta D, Bammler TK, Beyer RP, Montine TJ, Yeh MM et al (2010) Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Lab Invest 90(12):17–1704

    Article  Google Scholar 

  • Hargreaves IP, Lee PJ, Briddon A (2002) Homocysteine and cysteine–albumin binding in homocystinuria: assessment of cysteine status and implications for glutathione synthesis? Amino Acids 22(2):18–109

    Article  Google Scholar 

  • Hasek BE, Stewart LK, Henagan TM, Boudreau A, Lenard NR, Black C, Shin J, Huypens P, Malloy VL, Plaisance EP et al (2010) Dietary methionine restriction enhances metabolic flexibility and increases uncoupled respiration in both fed and fasted states. Am J Physiol Regul Integr Comp Physiol 299(3):R728–R739

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Hasek BE, Boudreau A, Shin J, Feng D, Hulver M, Van NT, Laque A, Stewart LK, Stone KP, Wanders D et al (2013) Remodeling the integration of lipid metabolism between liver and adipose tissue by dietary methionine restriction in rats. Diabetes 62(10):72–3362

    Article  Google Scholar 

  • Hodson L, Fielding BA (2012) Stearoyl-CoA desaturase: rogue or innocent bystander? Prog Lipid Res 52(1):15–42

    Article  PubMed  Google Scholar 

  • Horl G, Wagner A, Cole LK, Malli R, Reicher H, Kotzbeck P, Kofeler H, Hofler G, Frank S, Bogner-Strauss JG et al (2011) Sequential synthesis and methylation of phosphatidylethanolamine promote lipid droplet biosynthesis and stability in tissue culture and in vivo. J Biol Chem 286(19):50–17338

    Article  Google Scholar 

  • Iida M, Yasuhara T, Mochizuki H, Takakura H, Yanagisawa T, Kubo H (2005) Two Japanese brothers with hereditary gamma-glutamyl transpeptidase deficiency. J Inherit Metab Dis 28(1):49–55

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RL, Zhao Y, Koonen DP, Sletten T, Su B, Lingrell S, Cao G, Peake DA, Kuo MS, Proctor SD et al (2010) Impaired de novo choline synthesis explains why phosphatidylethanolamine N-methyltransferase-deficient mice are protected from diet-induced obesity. J Biol Chem 285(29):13–22403

    Article  Google Scholar 

  • Kaur S, Zilmer K, Kairane C, Kals M, Zilmer M (2008) Clear differences in adiponectin level and glutathione redox status revealed in obese and normal-weight patients with psoriasis. Br J Dermatol 159(6):7–1364

    Article  Google Scholar 

  • Kendig EL, Chen Y, Krishan M, Johansson E, Schneider SN, Genter MB, Nebert DW, Shertzer HG (2011) Lipid metabolism and body composition in Gclm(−/−) mice. Toxicol Appl Pharmacol 257(3):48–338

    Article  Google Scholar 

  • Kinross J, Li JV, Muirhead LJ, Nicholson J (2014) Nutritional modulation of the metabonome: applications of metabolic phenotyping in translational nutritional research. Curr Opin Gastroenterol 30(2):196–207

    Article  PubMed  CAS  Google Scholar 

  • Konstantinova SV, Tell GS, Vollset SE, Nygard O, Bleie O, Ueland PM (2008) Divergent associations of plasma choline and betaine with components of metabolic syndrome in middle age and elderly men and women. J Nutr 138(5):20–914

    Google Scholar 

  • Levasseur R, Barrios R, Elefteriou F, Glass DA 2nd, Lieberman MW, Karsenty G (2003) Reversible skeletal abnormalities in gamma-glutamyl transpeptidase-deficient mice. Endocrinology 144(7):4–2761

    Article  Google Scholar 

  • Lieberman MW, Wiseman AL, Shi ZZ, Carter BZ, Barrios R, Ou CN, Chevez-Barrios P, Wang Y, Habib GM, Goodman JC et al (1996) Growth retardation and cysteine deficiency in gamma-glutamyl transpeptidase-deficient mice. Proc Natl Acad Sci USA 93(15):6–7923

    Article  Google Scholar 

  • Lu SC (2013) Glutathione synthesis. Biochim Biophys Acta 1830(5):53–3143

    Google Scholar 

  • Mani S, Yang G, Wang R (2011) A critical life-supporting role for cystathionine gamma-lyase in the absence of dietary cysteine supply. Free Radic Biol Med 50(10):7–1280

    Article  Google Scholar 

  • Miyazaki M, Sampath H, Liu X, Flowers MT, Chu K, Dobrzyn A, Ntambi JM (2009) Stearoyl-CoA desaturase-1 deficiency attenuates obesity and insulin resistance in leptin-resistant obese mice. Biochem Biophys Res Commun 380(4):22–818

    Article  Google Scholar 

  • Morris C, O’Grada C, Ryan M, Roche HM, Gibney MJ, Gibney ER, Brennan L (2012) The relationship between BMI and metabolomic profiles: a focus on amino acids. Proc Nutr Soc 71(4):8–634

    Article  Google Scholar 

  • Mudd SH, Skovby F, Levy HL, Pettigrew KD, Wilcken B, Pyeritz RE, Andria G, Boers GH, Bromberg IL, Cerone R et al (1985) The natural history of homocystinuria due to cystathionine beta-synthase deficiency. Am J Hum Genet 37(1):1–31

    PubMed  CAS  PubMed Central  Google Scholar 

  • Noga AA, Stead LM, Zhao Y, Brosnan ME, Brosnan JT, Vance DE (2003) Plasma homocysteine is regulated by phospholipid methylation. J Biol Chem 278(8):5–5952

    Article  Google Scholar 

  • Ntambi JM, Miyazaki M, Stoehr JP, Lan H, Kendziorski CM, Yandell BS, Song Y, Cohen P, Friedman JM, Attie AD (2002) Loss of stearoyl-CoA desaturase-1 function protects mice against adiposity. Proc Natl Acad Sci USA 99(17):6–11482

    Article  Google Scholar 

  • Perrone CE, Mattocks DA, Hristopoulos G, Plummer JD, Krajcik RA, Orentreich N (2008) Methionine restriction effects on 11β-HSD1 activity and lipogenic/lipolytic balance in F344 rat adipose tissue. J Lipid Res 49(1):12–23

    Article  PubMed  CAS  Google Scholar 

  • Ratnam S, Maclean KN, Jacobs RL, Brosnan ME, Kraus JP, Brosnan JT (2002) Hormonal regulation of cystathionine beta-synthase expression in liver. J Biol Chem 277(45):8–42912

    Article  Google Scholar 

  • Richie JP Jr, Komninou D, Leutzinger Y, Kleinman W, Orentreich N, Malloy V, Zimmerman JA (2004) Tissue glutathione and cysteine levels in methionine-restricted rats. Nutrition 20(9):5–800

    Article  Google Scholar 

  • Roman HB, Hirschberger LL, Krijt J, Valli A, Kozich V, Stipanuk MH (2013) The cysteine dioxgenase knockout mouse: altered cysteine metabolism in nonhepatic tissues leads to excess H2S/HS(−) production and evidence of pancreatic and lung toxicity. Antioxid Redox Signal 19(12):36–1321

    Article  Google Scholar 

  • Sedda V, De Chiara B, Parolini M, Caruso R, Campolo J, Cighetti G, De Maria R, Sachero A, Donato L, Parodi O (2008) Plasma glutathione levels are independently associated with gamma-glutamyltransferase activity in subjects with cardiovascular risk factors. Free Radic Res 42(2):41–135

    Article  Google Scholar 

  • Sharma NK, Langberg KA, Mondal AK, Das SK (2013) Phospholipid biosynthesis genes and susceptibility to obesity: analysis of expression and polymorphisms. PLoS One 8(5):e65303

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83(1):5–10

    PubMed  CAS  Google Scholar 

  • Stipanuk MH, Dominy JE Jr, Lee JI, Coloso RM (2006) Mammalian cysteine metabolism: new insights into regulation of cysteine metabolism. J Nutr 136(6 Suppl):9S–1652S

    Google Scholar 

  • Stipanuk MH, Ueki I, Dominy JE Jr, Simmons CR, Hirschberger LL (2009) Cysteine dioxygenase: a robust system for regulation of cellular cysteine levels. Amino Acids 37(1):55–63

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Teng YW, Mehedint MG, Garrow TA, Zeisel SH (2011) Deletion of betaine-homocysteine S-methyltransferase in mice perturbs choline and 1-carbon metabolism, resulting in fatty liver and hepatocellular carcinomas. J Biol Chem 286(42):67–36258

    Article  Google Scholar 

  • Teng YW, Ellis JM, Coleman RA, Zeisel SH (2012) Mouse betaine-homocysteine S-methyltransferase deficiency reduces body fat via increasing energy expenditure and impairing lipid synthesis and enhancing glucose oxidation in white adipose tissue. J Biol Chem 287(20):98–16187

    Article  Google Scholar 

  • Ueki I, Stipanuk MH (2009) 3T3-L1 adipocytes and rat adipose tissue have a high capacity for taurine synthesis by the cysteine dioxygenase/cysteinesulfinate decarboxylase and cysteamine dioxygenase pathways. J Nutr 139(2):14–207

    Google Scholar 

  • Ueki I, Roman HB, Valli A, Fieselmann K, Lam J, Peters R, Hirschberger LL, Stipanuk MH (2011) Knockout of the murine cysteine dioxygenase gene results in severe impairment in ability to synthesize taurine and an increased catabolism of cysteine to hydrogen sulfide. Am J Physiol Endocrinol Metab 301(4):E668–E684

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ueki I, Roman HB, Hirschberger LL, Junior C, Stipanuk MH (2012) Extrahepatic tissues compensate for loss of hepatic taurine synthesis in mice with liver-specific knockout of cysteine dioxygenase. Am J Physiol Endocrinol Metab 302(10):E1292–E1299

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Vigilanza P, Aquilano K, Baldelli S, Rotilio G, Ciriolo MR (2011) Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. J Cell Physiol 226(8):24–2016

    Article  Google Scholar 

  • Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, Shore AC (2010) Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia 53(8):6–1722

    Article  Google Scholar 

  • Will Y, Fischer KA, Horton RA, Kaetzel RS, Brown MK, Hedstrom O, Lieberman MW, Reed DJ (2000) Gamma-glutamyltranspeptidase-deficient knockout mice as a model to study the relationship between glutathione status, mitochondrial function, and cellular function. Hepatology 32(4 Pt 1):9–740

    Google Scholar 

  • Wu G, Zhang L, Li T, Zuniga A, Lopaschuk GD, Li L, Jacobs RL, Vance DE (2013) Choline supplementation promotes hepatic insulin resistance in phosphatidylethanolamine N-methyltransferase-deficient mice via increased glucagon action. J Biol Chem 288(2):47–837

    Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S et al (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322(5901):90–587

    Article  Google Scholar 

  • Zhu X, Song J, Mar MH, Edwards LJ, Zeisel SH (2003) Phosphatidylethanolamine N-methyltransferase (PEMT) knockout mice have hepatic steatosis and abnormal hepatic choline metabolite concentrations despite ingesting a recommended dietary intake of choline. Biochem J 370(Pt 3):93–987

    Google Scholar 

Download references

Acknowledgments

The author is grateful to Professor Helga Refsum for valuable comments, and to Elfrid Blomdal for literature support. The study was supported by the Norman Collisson Foundation, the Norwegian Research Council and the Charles Wolfson Charitable Trust.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amany K. Elshorbagy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elshorbagy, A.K. Body composition in gene knockouts of sulfur amino acid-metabolizing enzymes. Mamm Genome 25, 455–463 (2014). https://doi.org/10.1007/s00335-014-9527-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-014-9527-x

Keywords

Navigation