Skip to main content
Log in

Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

Imprinted genes are defined by their parent-of-origin-specific monoallelic expression. Although the epigenetic mechanisms regulating imprinted gene expression have been widely studied, their functional importance is still unclear. Imprinted genes are associated with a number of physiologies, including placental function and foetal growth, energy homeostasis, and brain and behaviour. This review focuses on genomic imprinting in the brain and on two imprinted genes in particular, Nesp and paternal Grb10, which, when manipulated in animals, have been shown to influence adult behaviour. These two genes are of particular interest as they are expressed in discrete and overlapping neural regions, recognised as key “imprinting hot spots” in the brain. Furthermore, these two genes do not appear to influence placental function and/or maternal provisioning of offspring. Consequently, by understanding their behavioural function we may begin to shed light on the evolutionary significance of imprinted genes in the adult brain, independent of the recognised role in maternal care. In addition, we discuss the potential future directions of research investigating the function of these two genes and the behavioural role of imprinted genes more generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abramowitz LK, Bartolomei MS (2012) Genomic imprinting: recognition and marking of imprinted loci. Curr Opin Genet Dev 22:72–78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SR (2011) The extended granin family: structure, function, and biomedical implications. Endocr Rev 32:755–797

    Article  CAS  PubMed  Google Scholar 

  • Bauer R, Ischia R, Marksteiner J, Kapeller I, Fischer-Colbrie R (1999) Localization of neuroendocrine secretory protein 55 messenger RNA in the rat brain. Neuroscience 91:685–694

    Article  CAS  PubMed  Google Scholar 

  • Cassidy SB, Dykens E, Williams CA (2000) Prader–Willi and Angelman syndromes: sister imprinted disorders. Am J Med Genet 97:136–146

    Article  CAS  PubMed  Google Scholar 

  • Champagne FA, Curley JP, Swaney WT, Hasen NS, Keverne EB (2009) Paternal influence on female behavior: the role of Peg3 in exploration, olfaction, and neuroendocrine regulation of maternal behavior of female mice. Behav Neurosci 123:469

    Article  PubMed  Google Scholar 

  • Charalambous M, Cowley M, Geoghegan F, Smith FM, Radford EJ, Marlow BP, Graham CF, Hurst LD, Ward A (2010) Maternally-inherited Grb10 reduces placental size and efficiency. Dev Biol 337:1–8

    Article  CAS  PubMed  Google Scholar 

  • Choi JD, Underkoffler LA, Wood AJ, Collins JN, Williams PT, Golden JA, Schuster EF Jr, Loomes KM, Oakey RJ (2005) A novel variant of Inpp 5f is imprinted in brain, and its expression is correlated with differential methylation of an internal CpG island. Mol Cell Biol 25:5514–5522

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Curley JP, Barton S, Surani A, Keverne EB (2004) Coadaptation in mother and infant regulated by a paternally expressed imprinted gene. Proc Biol Sci 271:1303–1309

    Article  PubMed Central  PubMed  Google Scholar 

  • Davies W, Isles AR, Wilkinson LS (2005) Imprinted gene expression in the brain. Neurosci Biobehav Rev 29:421–430

    Article  CAS  PubMed  Google Scholar 

  • Davis JF, Krause EG, Melhorn SJ, Sakai RR, Benoit SC (2009) Dominant rats are natural risk takers and display increased motivation for food reward. Neuroscience 162:23–30

    Article  CAS  PubMed  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  CAS  PubMed  Google Scholar 

  • Fischer-Colbrie R, Eder S, Lovisetti-Scamihorn P, Becker A, Laslop A (2002) Neuroendocrine secretory protein 55. Ann N Y Acad Sci 971:317–322

    Article  CAS  PubMed  Google Scholar 

  • Fowden AL, Sibley C, Reik W, Constancial M (2006) Imprinted genes, placental development and fetal growth. Horm Res 65:50–58

    Article  CAS  PubMed  Google Scholar 

  • Francks C, Maegawa S, Lauren J, Abrahams BS, Velayos-Baeza A, Medland SE, Colella S, Groszer M, McAuley EZ, Caffrey TM, Timmusk T, Pruunsild P, Koppel I, Lind PA, Matsumoto-Itaba N, Nicod J, Xiong L, Joober R, Enard W, Krinsky B, Nanba E, Richardson AJ, Riley BP, Martin NG, Strittmatter SM, Moller HJ, Rujescu D, St Clair D, Muglia P, Roos JL, Fisher SE, Wade-Martins R, Rouleau GA, Stein JF, Karayiorgou M, Geschwind DH, Ragoussis J, Kendler KS, Airaksinen MS, Oshimura M, DeLisi LE, Monaco AP (2007) LRRTM1 on chromosome 2p12 is a maternally suppressed gene that is associated paternally with handedness and schizophrenia. Mol Psychiatry 12:1129–1139

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garfield AS, Cowley M, Smith FM, Moorwood K, Stewart-Cox JE, Gilroy K, Baker S, Xia J, Dalley JW, Hurst LD, Wilkinson LS, Isles AR, Ward A (2011) Distinct physiological and behavioural functions for parental alleles of imprinted Grb10. Nature 469:534–538

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gregg C, Zhang J, Weissbourd B, Luo S, Schroth GP, Haig D, Dulac C (2010) High-resolution analysis of parent-of-origin allelic expression in the mouse brain. Science 329:643–648

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gutierrez-Marcos JF, Constância M, Burton GJ (2012) Maternal to offspring resource allocation in plants and mammals. Placenta 33(suppl 2):e3–e10

    Article  PubMed  Google Scholar 

  • Haig D (2000) The kinship theory of genomic imprinting. Annu Rev Ecol Syst 31:9–32

    Article  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045

    Article  CAS  PubMed  Google Scholar 

  • Holt LJ, Siddle K (2005) Grb10 and Grb14: enigmatic regulators of insulin action and more? Biochem J 388(Pt 2):393–406

    CAS  PubMed  Google Scholar 

  • Holt LJ, Lyons RJ, Ryan AS, Beale SM, Ward A, Cooney GJ, Daly RJ (2009) Dual ablation of Grb10 and Grb14 in mice reveals their combined role in regulation of insulin signaling and glucose homeostasis. Mol Endocrinol 23:1406–1414

    Article  CAS  PubMed  Google Scholar 

  • Humby T, Wilkinson L, Dawson G (2005) Assaying aspects of attention and impulse control in mice using the 5‐choice serial reaction time task. Curr Protoc Neurosci Chap. 8, Unit 8.5H. doi:10.1002/0471142301.ns0805hs31

  • Humby T, Eddy JB, Good MA, Reichelt AC, Wilkinson LS (2013) A novel translational assay of response inhibition and impulsivity: effects of prefrontal cortex lesions, drugs used in ADHD, and serotonin 2C receptor antagonism. Neuropsychopharmacology. doi:10.1038/npp.2013.112

  • Isles AR, Holland AJ (2005) Imprinted genes and mother–offspring interactions. Early Hum Dev 81:73–77

    Article  PubMed  Google Scholar 

  • Isles AR, Baum MJ, Ma D, Keverne EB, Allen ND (2001) Urinary odour preferences in mice. Nature 409:783–784

    Article  CAS  PubMed  Google Scholar 

  • Isles AR, Humby T, Wilkinson LS (2003) Measuring impulsivity in mice using a novel operant delayed reinforcement task: effects of behavioural manipulations and d-amphetamine. Psychopharmacology (Berl) 170:376–382

    Article  CAS  Google Scholar 

  • Isles AR, Davies W, Wilkinson LS (2006) Genomic imprinting and the social brain. Philos Trans R Soc Lond B Biol Sci 361:2229–2237

    Article  CAS  PubMed  Google Scholar 

  • John RM, Lefebvre L (2011) Developmental regulation of somatic imprints. Differentiation 81:270–280

    Article  CAS  PubMed  Google Scholar 

  • Kelsey G, Feil R (2013) New insights into establishment and maintenance of DNA methylation imprints in mammals. Philos Trans R Soc Lond B Biol Sci 368:20110336

    Article  PubMed  Google Scholar 

  • Keverne EB (1997) Genomic imprinting in the brain. Curr Opin Neurobiol 7:463–468

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre L, Viville S, Barton SC, Ishino F, Keverne EB, Surani MA (1998) Abnormal maternal behaviour and growth retardation associated with loss of the imprinted gene Mest. Nat Genet 20:163–169

    Article  CAS  PubMed  Google Scholar 

  • Lovisetti-Scamihorn P, Fischer-Colbrie R, Leitner B, Scherzer G, Winkler H (1999) Relative amounts and molecular forms of NESP55 in various bovine tissues. Brain Res 829:99–106

    Article  CAS  PubMed  Google Scholar 

  • McNamara GI, Isles AR (2013) Dosage sensitivity of imprinted genes expressed in the brain: 15q11–q13 and neuropsychiatric illness. Biochem Soc Trans 41:721–726

    Article  CAS  PubMed  Google Scholar 

  • Muscatelli F, Abrous DN, Massacrier A, Boccaccio I, Le Moal M, Cau P, Cremer H (2000) Disruption of the mouse Necdin gene results in hypothalamic and behavioral alterations reminiscent of the human Prader–Willi syndrome. Hum Mol Genet 9:3101–3110

    Article  CAS  PubMed  Google Scholar 

  • Plagge A, Gordon E, Dean W, Boiani R, Cinti S, Peters J, Kelsey G (2004) The imprinted signaling protein XLαs is required for postnatal adaptation to feeding. Nat Genet 36:818–826

    Article  CAS  PubMed  Google Scholar 

  • Plagge A, Isles AR, Gordon E, Humby T, Dean W, Gritsch S, Fischer-Colbrie R, Wilkinson LS, Kelsey G (2005) Imprinted Nesp55 influences behavioral reactivity to novel environments. Mol Cell Biol 25:3019–3026

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Relkovic D, Doe CM, Humby T, Johnstone KA, Resnick JL, Holland AJ, Hagan JJ, Wilkinson LS, Isles AR (2010) Behavioural and cognitive abnormalities in an imprinting centre deletion mouse model for Prader–Willi syndrome. Eur J Neurosci 31:156–164

    Article  PubMed  Google Scholar 

  • Rougeulle C, Glatt H, Lalande M (1997) The Angelman syndrome candidate gene, UBE3A/E6-AP, is imprinted in brain. Nat Genet 17:14–15

    Article  CAS  PubMed  Google Scholar 

  • Sanz LA, Chamberlain S, Sabourin J-C, Henckel A, Magnuson T, Hugnot J-P, Feil R, Arnaud P (2008) A mono-allelic bivalent chromatin domain controls tissue-specific imprinting at Grb10. EMBO J 27:2523–2532

    Article  CAS  PubMed  Google Scholar 

  • Smallwood SA, Tomizawa S, Krueger F, Ruf N, Carli N, Segonds-Pichon A, Sato S, Hata K, Andrews SR, Kelsey G (2011) Dynamic CpG island methylation landscape in oocytes and preimplantation embryos. Nat Genet 43:811–814

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith FM, Garfield AS, Ward A (2006) Regulation of growth and metabolism by imprinted genes. Cytogenet Genome Res 113:279–291

    Article  CAS  PubMed  Google Scholar 

  • Swaney WT, Curley JP, Champagne FA, Keverne EB (2007) Genomic imprinting mediates sexual experience-dependent olfactory learning in male mice. Proc Natl Acad Sci USA 104:6084–6089

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Zhu J, Zhu H, Zhang Q, Lin Z, Hu H (2011) Bidirectional control of social hierarchy by synaptic efficacy in medial prefrontal cortex. Science 334:693–697

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson LS, Davies W, Isles AR (2007) Genomic imprinting effects on brain development and function. Nat Rev Neurosci 8:832–843

    Article  CAS  PubMed  Google Scholar 

  • Wolf JB, Hager R (2006) A maternal–offspring coadaptation theory for the evolution of genomic imprinting. PLoS Biol 4:e380

    Article  PubMed Central  PubMed  Google Scholar 

  • Xie W, Barr CL, Kim A, Yue F, Lee AY, Eubanks J, Dempster EL, Ren B (2012) Base-resolution analyses of sequence and parent-of-origin dependent DNA methylation in the mouse genome. Cell 148:816–831

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. Isles.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dent, C.L., Isles, A.R. Brain-expressed imprinted genes and adult behaviour: the example of Nesp and Grb10 . Mamm Genome 25, 87–93 (2014). https://doi.org/10.1007/s00335-013-9472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9472-0

Keywords

Navigation