Abstract
Mutations in the gene for destrin (Dstn), an actin depolymerizing factor, lead to corneal abnormalities in mice. A null mutation in Dstn, termed Dstn corn1, isolated and maintained in the A.BY background (A.BY Dstn corn1), results in corneal epithelial hyperproliferation, inflammation, and neovascularization. We previously reported that neovascularization in the cornea of Dstn corn1 mice on the C57BL/6 background (B6.A.BY-Dstn corn1) is significantly reduced when compared to A.BY Dstn corn1 mice, suggesting the existence of genetic modifier(s). The purpose of this study is to identify the genetic basis of the difference in corneal neovascularization between A.BY Dstn corn1 and B6.A.BY-Dstn corn1 mice. We generated N2 mice for a whole-genome scan by backcrossing F1 progeny (A.BY Dstn corn1 × B6.A.BY-Dstn corn1) to B6.A.BY-Dstn corn1 mice. N2 progeny were quantitatively phenotyped for the extent of corneal neovascularization and genotyped for markers across the mouse genome. We identified significant association of variability in corneal neovascularization with a locus on chromosome 3 (Chr3). The validity of the identified quantitative trait locus (QTL) was tested using B6 consomic mice carrying Chr3 from A/J mice. Dstn corn1 mice from F1 and F2 intercrosses (B6.A.BY-Dstn corn1 × C57BL/6J-Chr3A/J/NaJ) were phenotyped for the extent of corneal neovascularization. This analysis showed that mice carrying the A/J allele at the QTL show significantly increased neovascularization. Our results indicate the existence of a modifier that genetically interacts with the Dstn gene. This modifier demonstrates allelic differences between C57BL6 and A.BY or A/J. The modifier is sufficient to increase neovascularization in Dstn corn1 mice.
Similar content being viewed by others
References
Arends D, Prins P, Jansen RC, Broman KW (2010) R/qtl: high-throughput multiple QTL mapping. Bioinformatics 26:2990–2992. doi:10.1093/bioinformatics/btq565
Benson CC, Zhou Q, Long X, Miano JM (2011) Identifying functional single nucleotide polymorphisms in the human CArGome. Physiol Genomics 43:1038–1048. doi:10.1152/physiolgenomics.00098.2011
Bock F, Onderka J, Hos D et al (2008) Improved semiautomatic method for morphometry of angiogenesis and lymphangiogenesis in corneal flatmounts. Exp Eye Res 87:462–470. doi:10.1016/j.exer.2008.08.007
Dong A, Shen J, Zeng M, Campochiaro PA (2011) Vascular cell-adhesion molecule-1 plays a central role in the proangiogenic effects of oxidative stress. Proc Natl Acad Sci USA 108:14614–14619. doi:10.1073/pnas.1012859108
Hanna M, Liu H, Amir J et al (2009) Mechanical regulation of the proangiogenic factor CCN1/CYR61 gene requires the combined activities of MRTF-A and CREB-binding protein histone acetyltransferase. J Biol Chem 284:23125–23136. doi:10.1074/jbc.M109.019059
Ikeda S, Cunningham LA, Boggess D et al (2003) Aberrant actin cytoskeleton leads to accelerated proliferation of corneal epithelial cells in mice deficient for destrin (actin depolymerizing factor). Hum Mol Genet 12:1029–1037
Jakobsson L, Franco CA, Bentley K et al (2010) Endothelial cells dynamically compete for the tip cell position during angiogenic sprouting. Nat Cell Biol 12:943–953. doi:10.1038/ncb2103
Johnson BA, Aoyama N, Friedell NH et al (2008) Genetic modification of the schisis phenotype in a mouse model of X-linked retinoschisis. Genetics 178:1785–1794. doi:10.1534/genetics.107.084905
Jurisic G, Sundberg JP, Bleich A et al (2010) Quantitative lymphatic vessel trait analysis suggests Vcam1 as candidate modifier gene of inflammatory bowel disease. Genes Immun 11:219–231. doi:10.1038/gene.2010.4
Kawakami-Schulz SV, Verdoni AM, Sattler SG et al (2012) Differences in corneal phenotypes between destrin mutants are due to allelic difference and modified by genetic background. Mol Vis 18:606–616
Kim KH, Min YK, Baik JH et al (2003) Expression of angiogenic factor Cyr61 during neuronal cell death via the activation of c-Jun N-terminal kinase and serum response factor. J Biol Chem 278:13847–13854. doi:10.1074/jbc.M210128200
Kushner EJ, Bautch VL (2013) Building blood vessels in development and disease. Curr Opin Hematol 20:231–236. doi:10.1097/MOH.0b013e328360614b
Le Roy I, Perez-Diaz F, Cherfouh A, Roubertoux PL (1999) Preweanling sensorial and motor development in laboratory mice: quantitative trait loci mapping. Dev Psychobiol 34:139–158
Lin C, Hindes A, Burns CJ et al (2013) Serum response factor controls transcriptional network regulating epidermal function and hair follicle morphogenesis. J Invest Dermatol 133:608–617. doi:10.1038/jid.2012.378
Lively GD, Jiang B, Hedberg-Buenz A et al (2010) Genetic dependence of central corneal thickness among inbred strains of mice. Invest Ophthalmol Vis Sci 51:160–171. doi:10.1167/iovs.09-3429
Nakao S, Maruyama K, Zandi S et al (2010) Lymphangiogenesis and angiogenesis: concurrence and/or dependence? Studies in inbred mouse strains. FASEB J 24:504–513. doi:10.1096/fj.09-134056
Ohno T, Hata K, Baba T et al (2012) Establishment of consomic strains derived from A/J and SM/J mice for genetic analysis of complex traits. Mamm Genome 23:764–769. doi:10.1007/s00335-012-9435-x
Pakneshan P, Birsner AE, Adini I et al (2008) Differential suppression of vascular permeability and corneal angiogenesis by nonsteroidal anti-inflammatory drugs. Invest Ophthalmol Vis Sci 49:3909–3913. doi:10.1167/iovs.07-1527
Qazi Y, Maddula S, Ambati BK (2009) Mediators of ocular angiogenesis. J Genet 88:495–515. doi:10.1007/s12041-009-0068-0
Qazi Y, Wong G, Monson B et al (2010) Corneal transparency: genesis, maintenance and dysfunction. Brain Res Bull 81:198–210. doi:10.1016/j.brainresbull.2009.05.019
Ribatti D, Crivellato E (2012) “Sprouting angiogenesis”, a reappraisal. Dev Biol 372(2):157–165. doi:10.1016/j.ydbio.2012.09.018
Rogers M, D’Amato R (2011) Common Polymorphisms in Angiogenesis. In: Klagsbrun M, D’Amore PA (eds) Angiogenesis: biology and pathology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 415–434
Rogers MS, Rohan RM, Birsner AE, D’Amato RJ (2003) Genetic loci that control vascular endothelial growth factor-induced angiogenesis. FASEB J 17:2112–2114. doi:10.1096/fj.03-0246fje
Rogers MS, Rohan RM, Birsner AE, D’Amato RJ (2004) Genetic loci that control the angiogenic response to basic fibroblast growth factor. FASEB J 18:1050–1059. doi:10.1096/fj.03-1241com
Rogers MS, Birsner AE, D’Amato RJ (2007) The mouse cornea micropocket angiogenesis assay. Nat Protoc 2:2545–2550. doi:10.1038/nprot.2007.368
Rogers MS, Adini I, McBride AF et al (2013) The albino mutation of tyrosinase alters ocular angiogenic responsiveness. Angiogenesis 16(3):639–646. doi:10.1007/s10456-013-9342-0
Schreier B, Rabe S, Schneider B et al (2013) Loss of epidermal growth factor receptor in vascular smooth muscle cells and cardiomyocytes causes arterial hypotension and cardiac hypertrophy. Hypertension 61:333–340. doi:10.1161/HYPERTENSIONAHA.112.196543
Sen S, Churchill GA (2001) A statistical framework for quantitative trait mapping. Genetics 159:371–387
Smith RS, Hawes NL, Kuhlmann SD et al (1996) Corn1: a mouse model for corneal surface disease and neovascularization. Invest Ophthalmol Vis Sci 37:397–404
Sun Q, Chen G, Streb JW et al (2006) Defining the mammalian CArGome. Genome Res 16:197–207. doi:10.1101/gr.4108706
Verdoni AM, Aoyama N, Ikeda A, Ikeda S (2008a) Effect of destrin mutations on the gene expression profile in vivo. Physiol Genomics 34:9–21. doi:10.1152/physiolgenomics.00285.2007
Verdoni AM, Smith RS, Ikeda A, Ikeda S (2008b) Defects in actin dynamics lead to an autoinflammatory condition through the upregulation of CXCL5. PLoS One 3:e2701. doi:10.1371/journal.pone.0002701.g005
Verdoni AM, Schuster KJ, Cole BS et al (2010) A pathogenic relationship between a regulator of the actin cytoskeleton and serum response factor. Genetics 186:147–157. doi:10.1534/genetics.110.117309
Wang SS, Shi W, Wang X et al (2007) Mapping, genetic isolation, and characterization of genetic loci that determine resistance to atherosclerosis in C3H mice. Arterioscler Thromb Vasc Biol 27:2671–2676. doi:10.1161/ATVBAHA.107.148106
Yuan Z, Pei H, Roberts DJ et al (2009) Quantitative trait locus analysis of neointimal formation in an intercross between C57BL/6 and C3H/HeJ apolipoprotein E-deficient mice. Circ Cardiovasc Genet 2:220–228. doi:10.1161/CIRCGENETICS.108.792499
Acknowledgments
The authors thank Zhen Zhang for development and technical support of E-mouseLab, Katie Clowers and Zak Lemmon for feedback and assistance with R/qtl, and the University of Wisconsin-Madison Genetics Confocal Facility for the use of the confocal microscope. This work was supported by a grant from the National Institutes of Health (NIH R01EY016108) and a core Grant to Waisman Center (NIH P30HD03352). Support for S.V.K-S was partially provided by the NIH predoctoral training program in Genetics (NIH 5T32GM07133).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Kawakami-Schulz, S.V., Sattler, S.G., Doebley, AL. et al. Genetic modification of corneal neovascularization in Dstn corn1 mice. Mamm Genome 24, 349–357 (2013). https://doi.org/10.1007/s00335-013-9468-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00335-013-9468-9