Skip to main content

Advertisement

Log in

Functional validation of the genetic architecture of Salmonella Enteritidis persistence in 129S6 mice

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The Gram-negative bacteria, Salmonella, cause a broad spectrum of clinical diseases in humans, ranging from asymptomatic carriage to life-threatening sepsis. We have designed an experimental model to study the contribution of genetic factors to the persistence of Salmonella Enteritidis during the late phase of infection in 129S6/SvEvTac and C57BL/6J mice. C57BL/6J mice cleared the bacteria from their reticuloendothelial system within a period of 42 days, whereas the 129S6 mice still presented a high bacterial load. Using this model, we have identified ten Salmonella Enteritidis susceptibility loci (Ses1, Ses1.1, and Ses3Ses10) associated with bacterial persistence in target organs of 129S6/SvEvTac mice using a two-locus epistasis QTL linkage mapping approach. Significant statistical interactions were detected between Ses1 on chromosome 1 and Ses5 on chromosome 7 and between Ses1 and Ses4 on chromosome X. In this study, we functionally validated the genetic architecture of Salmonella persistence in 129S6 mice using single- (129S6.B6-Ses1.2 that combines Ses1 and Ses1.1 loci, 129S6.B6-Ses4, and 129S6.B6-Ses5) and double-congenic mice (129S6.B6-Ses1.2/Ses4 and 129S6.B6-Ses1.2/Ses5). These experiments demonstrate functional interactions between Ses1.2 and Ses4 or Ses5 that improve Salmonella Enteritidis clearance, validating the critical role played by gene–gene interactions in the contribution to bacterial clearance heritability. Improved bacterial clearance in double-congenic mice could be explained by the impact of Ses4 and Ses5 in combination with Ses1.2 on TH polarization since a TH2 bias (decreased Ifng and increased Il4 mRNA levels and reduced IgG2a immunoglobulins in the serum) was observed in 129S6.B6-Ses1.2/Ses5 mice and a TH17 (high Il17 expression) bias in 129S6.B6-Ses1.2/Ses4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350

    Article  PubMed  CAS  Google Scholar 

  • Carlborg O, Haley CS (2004) Epistasis: too often neglected in complex trait studies? Nat Rev Genet 5:618–625

    Article  PubMed  CAS  Google Scholar 

  • Carlborg O, Kerje S, Schutz K, Jacobsson L, Jensen P, Andersson L (2003) A global search reveals epistatic interaction between QTL for early growth in the chicken. Genome Res 13:413–421

    Article  PubMed  CAS  Google Scholar 

  • Caron J, Loredo-Osti JC, Laroche L, Skamene E, Morgan K, Malo D (2002) Identification of genetic loci controlling bacterial clearance in experimental Salmonella enteritidis infection: an unexpected role of Nramp1 (Slc11a1) in the persistence of infection in mice. Genes Immun 3:196–204

    Article  PubMed  CAS  Google Scholar 

  • Caron J, Loredo-Osti JC, Morgan K, Malo D (2005) Mapping of interactions and mouse congenic strains identified novel epistatic QTLs controlling the persistence of Salmonella Enteritidis in mice. Genes Immun 6:500–508

    Article  PubMed  CAS  Google Scholar 

  • Caron J, Lariviere L, Nacache M, Tam M, Stevenson MM, McKerly C, Gros P, Malo D (2006) Influence of Slc11a1 on the outcome of Salmonella enterica serovar Enteritidis infection in mice is associated with Th polarization. Infect Immun 74:2787–2802

    Article  PubMed  CAS  Google Scholar 

  • Crump JA, Mintz ED (2010) Global trends in typhoid and paratyphoid fever. Clin Infect Dis 50:241–246

    Article  PubMed  Google Scholar 

  • de Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, Al-Muhsen S, Janniere L, Rose Y, de Suremain M, Kong XF, Filipe-Santos O, Chapgier A, Picard C, Fischer A, Dogu F, Ikinciogullari A, Tanir G, Al-Hajjar S, Al-Jumaah S, Frayha HH, AlSum Z, Al-Ajaji S, Alangari A, Al-Ghonaium A, Adimi P, Mansouri D, Ben-Mustapha I, Yancoski J, Garty BZ, Rodriguez-Gallego C, Caragol I, Kutukculer N, Kumararatne DS, Patel S, Doffinger R, Exley A, Jeppsson O, Reichenbach J, Nadal D, Boyko Y, Pietrucha B, Anderson S, Levin M, Schandene L, Schepers K, Efira A, Mascart F, Matsuoka M, Sakai T, Siegrist CA, Frecerova K, Bluetters-Sawatzki R, Bernhoft J, Freihorst J, Baumann U, Richter D, Haerynck F, De Baets F, Novelli V, Lammas D, Vermylen C, Tuerlinckx D, Nieuwhof C, Pac M, Haas WH, Muller-Fleckenstein I, Fleckenstein B, Levy J, Raj R, Cohen AC, Lewis DB, Holland SM, Yang KD, Wang X, Jiang L, Yang X, Zhu C, Xie Y, Lee PP, Chan KW, Chen TX, Castro G, Natera I, Codoceo A, King A, Bezrodnik L, Di Giovani D, Gaillard MI, de Moraes-Vasconcelos D, Grumach AS, da Silva Duarte AJ, Aldana R, Espinosa-Rosales FJ, Bejaoui M, Bousfiha AA, Baghdadi JE, Ozbek N, Aksu G, Keser M, Somer A, Hatipoglu N, Aydogmus C, Asilsoy S, Camcioglu Y, Gulle S, Ozgur TT, Ozen M, Oleastro M, Bernasconi A, Mamishi S, Parvaneh N, Rosenzweig S, Barbouche R, Pedraza S, Lau YL, Ehlayel MS, Fieschi C, Abel L, Sanal O, Casanova JL (2010) Revisiting human IL-12Rbeta1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore) 89:381–402

    Article  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • Khan R, Sancho-Shimizu V, Prendergast C, Roy MF, Loredo-Osti JC, Malo D (2012) Refinement of the genetics of the host response to Salmonella infection in MOLF/Ei: regulation of type 1 IFN and TRP3 pathways by Ity2. Genes Immun 13:175–183

    Article  PubMed  CAS  Google Scholar 

  • Lin X, Hamilton-Williams EE, Rainbow DB, Hunter KM, Dai YD, Cheung J, Peterson LB, Wicker LS, Sherman LA (2013) Genetic interactions among Idd3, Idd5.1, Idd5.2, and Idd5.3 protective loci in the nonobese diabetic mouse model of type 1 diabetes. J Immunol 190(7):3109–3120

    Article  PubMed  CAS  Google Scholar 

  • Lipoldova M, Demant P (2006) Genetic susceptibility to infectious disease: lessons from mouse models of leishmaniasis. Nat Rev Genet 7:294–305

    Article  PubMed  CAS  Google Scholar 

  • Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889

    Article  PubMed  Google Scholar 

  • Mastroeni P, Duncan M (2006) Salmonella infections clinical, immunological and molecular aspects. Cambridge University Press, New York

    Book  Google Scholar 

  • Mathur R, Oh H, Zhang D, Park SG, Seo J, Koblansky A, Hayden MS, Ghosh S (2012) A mouse model of Salmonella typhi infection. Cell 151:590–602

    Article  PubMed  CAS  Google Scholar 

  • Mitsdoerffer M, Lee Y, Jager A, Kim HJ, Korn T, Kolls JK, Cantor H, Bettelli E, Kuchroo VK (2010) Proinflammatory T helper type 17 cells are effective B-cell helpers. Proc Natl Acad Sci USA 107:14292–14297

    Article  PubMed  CAS  Google Scholar 

  • Monack DM, Bouley DM, Falkow S (2004) Salmonella typhimurium persists within macrophages in the mesenteric lymph nodes of chronically infected Nramp1+/+ mice and can be reactivated by IFNgamma neutralization. J Exp Med 199:231–241

    Article  PubMed  CAS  Google Scholar 

  • Montooth KL, Marden JH, Clark AG (2003) Mapping determinants of variation in energy metabolism, respiration and flight in Drosophila. Genetics 165:623–635

    PubMed  CAS  Google Scholar 

  • O’Shea JJ, Paul WE (2010) Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Science 327:1098–1102

    Article  PubMed  Google Scholar 

  • Peripato AC, De Brito RA, Vaughn TT, Pletscher LS, Matioli SR, Cheverud JM (2002) Quantitative trait loci for maternal performance for offspring survival in mice. Genetics 162:1341–1353

    PubMed  CAS  Google Scholar 

  • Prevorsek Z, Gorjanc G, Paigen B, Horvat S (2010) Congenic and bioinformatics analyses resolved a major-effect Fob3b QTL on mouse Chr 15 into two closely linked loci. Mamm Genome 21:172–185

    Article  PubMed  Google Scholar 

  • Qiao D, Yang BY, Li L, Ma JJ, Zhang XL, Lao SH, Wu CY (2011) ESAT-6- and CFP-10-specific Th1, Th22 and Th17 cells in tuberculous pleurisy may contribute to the local immune response against Mycobacterium tuberculosis infection. Scand J Immunol 73:330–337

    Article  PubMed  CAS  Google Scholar 

  • Raffatellu M, Santos RL, Verhoeven DE, George MD, Wilson RP, Winter SE, Godinez I, Sankaran S, Paixao TA, Gordon MA, Kolls JK, Dandekar S, Baumler AJ (2008) Simian immunodeficiency virus-induced mucosal interleukin-17 deficiency promotes Salmonella dissemination from the gut. Nat Med 14:421–428

    Article  PubMed  CAS  Google Scholar 

  • Richer E, Prendergast C, Zhang DE, Qureshi ST, Vidal SM, Malo D (2010) N-ethyl-N-nitrosourea-induced mutation in ubiquitin-specific peptidase 18 causes hyperactivation of IFN-αβ signaling and suppresses STAT4-induced IFN-γ production, resulting in increased susceptibility to Salmonella typhimurium. J Immunol 185:3593–3601

    Article  PubMed  CAS  Google Scholar 

  • Schulz SM, Kohler G, Holscher C, Iwakura Y, Alber G (2008) IL-17A is produced by Th17, gammadelta T cells and other CD4–lymphocytes during infection with Salmonella enterica serovar Enteritidis and has a mild effect in bacterial clearance. Int Immunol 20:1129–1138

    Article  PubMed  CAS  Google Scholar 

  • Snapper CM, Paul WE (1987) Interferon-gamma and B cell stimulatory factor-1 reciprocally regulate Ig isotype production. Science 236:944–947

    Article  PubMed  CAS  Google Scholar 

  • Song J, Willinger T, Rongvaux A, Eynon EE, Stevens S, Manz MG, Flavell RA, Galan JE (2010) A mouse model for the human pathogen Salmonella typhi. Cell Host Microbe 8:369–376

    Article  PubMed  CAS  Google Scholar 

  • Stenger S, Mazzaccaro RJ, Uyemura K, Cho S, Barnes PF, Rosat JP, Sette A, Brenner MB, Porcelli SA, Bloom BR, Modlin RL (1997) Differential effects of cytolytic T cell subsets on intracellular infection. Science 276:1684–1687

    Article  PubMed  CAS  Google Scholar 

  • Sukupolvi S, Edelstein A, Rhen M, Normark SJ, Pfeifer JD (1997) Development of a murine model of chronic Salmonella infection. Infect Immun 65:838–842

    PubMed  CAS  Google Scholar 

  • Vidal SM, Malo D, Vogan K, Skamene E, Gros P (1993) Natural resistance to infection with intracellular parasites: isolation of a candidate for Bcg. Cell 73:469–485

    Article  PubMed  CAS  Google Scholar 

  • Vidal SM, Malo D, Marquis JF, Gros P (2008) Forward genetic dissection of immunity to infection in the mouse. Annu Rev Immunol 26:81–132

    Article  PubMed  CAS  Google Scholar 

  • Wiltshire SA, Leiva-Torres GA, Vidal SM (2011) Quantitative trait locus analysis, pathway analysis, and consomic mapping show genetic variants of Tnni3k, Fpgt, or H28 control susceptibility to viral myocarditis. J Immunol 186:6398–6405

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Han Y, Xu X, Bao Y, Zhang M, Cao X (2010) IL-17A-producing gammadeltaT cells promote CTL responses against Listeria monocytogenes infection by enhancing dendritic cell cross-presentation. J Immunol 185:5879–5887

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Yamane H, Paul WE (2010) Differentiation of effector CD4 T cell populations (*). Annu Rev Immunol 28:445–489

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the excellent technical assistance of Nadia Prud’homme and Line Larivière. This work was supported by a Canadian Institutes of Health Research Grant to DM. DM is a McGill Dawson Scholar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielle Malo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chevenon, M., Naccache, M., Eva, M.M. et al. Functional validation of the genetic architecture of Salmonella Enteritidis persistence in 129S6 mice. Mamm Genome 24, 218–227 (2013). https://doi.org/10.1007/s00335-013-9453-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-013-9453-3

Keywords

Navigation