Skip to main content

Advertisement

Log in

Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse

  • Published:
Mammalian Genome Aims and scope Submit manuscript

Abstract

The laboratory mouse is an artificial construct with a complex relationship to its natural ancestors. In 2002, the mouse became the first mammalian model organism with a reference genome. Importantly, the mouse genome sequence was assembled from data on a single inbred laboratory strain, C57BL/6. Several large-scale genetic variant discovery efforts have been conducted, resulting in a catalog of tens of millions of SNPs and structural variants. High-density genotyping arrays covering a subset of those variants have been used to produce hundreds of millions of genotypes in laboratory stocks and a small number of wild mice. These landmark resources now enable us to determine relationships among laboratory mice, assign local ancestry at fine scale, resolve important controversies, and identify a new set of challenges—most importantly, the troubling scarcity of genetic data on the very natural populations from which the laboratory mouse was derived. Our aim with this review is to provide the reader with an historical context for the mouse as a model organism and to explain how practical decisions made in the past have influenced both the architecture of the laboratory mouse genome and the design and execution of current large-scale resources. We also provide examples on how the accomplishments of the past decade can be used by researchers to streamline the use of mice in their experiments and correctly interpret results. Finally, we propose future steps that will enable the mouse community to extend its successes in the decade to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • 1000 Genomes Project Consortium (2010) A map of human genome variation from population-scale sequencing. Nature 467:1061–1073

    Article  CAS  Google Scholar 

  • Artzt K, Barlow D, Dove WF, Lindahl KF, Klein J, Lyon MF, Silver LM (1991) Maps of mouse chromosome 17: first report. Mamm Genome 1:5–29

    Article  CAS  Google Scholar 

  • Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS, Dove WF, Duyk G, Dymecki S, Eppig JT et al (2004) The knockout mouse project. Nat Genet 36:921–924

    Article  PubMed  CAS  Google Scholar 

  • Aylor DL, Valdar W, Foulds-Mathes W, Buus RJ, Verdugo RA, Baric RS, Ferris MT, Frelinger JA, Heise M, Frieman MB et al (2011) Genetic analysis of complex traits in the emerging Collaborative Cross. Genome Res 21:1213–1222

    Article  PubMed  CAS  Google Scholar 

  • Battey J, Jordan E, Cox D, Dove W (1999) An action plan for mouse genomics. Nat Genet 21:73–75

    Article  PubMed  CAS  Google Scholar 

  • Beck JA, Lloyd S, Hafezparast M, Lennon-Pierce M, Eppig JT, Festing MF, Fisher EM (2000) Genealogies of mouse inbred strains. Nat Genet 24:23–25

    Article  PubMed  CAS  Google Scholar 

  • Bishop CE, Boursot P, Baron B, Bonhomme F, Hatat D (1985) Most classical Mus musculus domesticus laboratory mouse strains carry a Mus musculus musculus Y chromosome. Nature 315:70–72

    Article  PubMed  CAS  Google Scholar 

  • Blanchet C, Jaubert J, Carniel E, Fayolle C, Milon G, Szatanik M, Panthier JJ, Montagutelli X (2011) Mus spretus SEG/Pas mice resist virulent Yersinia pestis, under multigenic control. Genes Immun 12:23–30

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme F, Selander RK (1978) Estimating total genic diversity in the house mouse. Biochem Genet 16:287–297

    Article  PubMed  CAS  Google Scholar 

  • Bonhomme F, Guénet JL, Dod B, Moriwaki K, Bulfield G (1987) The polyphyletic origin of laboratory inbred mice and their rate of evolution. Bio J Linn Soc 30:51–58

    Article  Google Scholar 

  • Bonhomme F, Anand R, Darviche D, Din W (1994) The house mouse as a ring species. In: Moriwaki K, Shiroishi T, Yonekawa H (eds) Genetics in Wild Mice: Its Application to Biomedical Research. Japanese Scientific Societies Press, Tokyo, pp 13–23

    Google Scholar 

  • Bottomly D, Ferris MT, Aicher LD, Rosenzweig E, Whitmore A, Aylor DL, Haagmans BL, Gralinski LE, Bradel-Tretheway BG, Bryan JT et al (2012) Expression quantitative trait loci for extreme host response to influenza a in pre-collaborative cross mice. G3 2:213–221

    Article  PubMed  Google Scholar 

  • Boursot P, Belkhir K (2006) Mouse SNPs for evolutionary biology: beware of ascertainment biases. Genome Res 16:1191–1192

    Article  PubMed  CAS  Google Scholar 

  • Boursot P, Auffray JC, Britton-Davidian J, Bonhomme F (1993) The evolution of house mice. Annu Rev Ecol Syst 24:119–152

    Article  Google Scholar 

  • Boursot P, Din W, Anand R, Darviche D, Dod B, Von Deimling F, Talwar GP, Bonhomme F (1996) Origin and radiation of the house mouse: mitochondrial DNA phylogeny. J Evol Biol 9:391–415

    Article  CAS  Google Scholar 

  • Boyko AR, Quignon P, Li L, Schoenebeck JJ, Degenhardt JD, Lohmueller KE, Zhao K, Brisbin A, Parker HG, vonHoldt BM et al (2010) A simple genetic architecture underlies morphological variation in dogs. PLoS Biol 8:e1000451

    Article  PubMed  CAS  Google Scholar 

  • Brown PR, Singleton GR (2002) Impacts of house mice on crops in Australia: costs and damage. In: Clark L, Hone J, Shivik JA, Watkins RA, VerCauteren KC, Yoder JK (eds) Human conflicts with wildlife: economic considerations. National Wildlife Research Center, Fort Collins, pp 48–58

    Google Scholar 

  • Brunschwig H, Levi L, Ben-David E, Williams RW, Yakir B, Shifman S (2012) Fine-scale maps of recombination rates and hotspots in the mouse genome. Genetics 191:757–764

    Article  PubMed  Google Scholar 

  • Burgess-Herbert SL, Tsaih SW, Stylianou IM, Walsh K, Cox AJ, Paigen B (2009) An experimental assessment of in silico haplotype association mapping in laboratory mice. BMC Genet 10:81

    Article  PubMed  CAS  Google Scholar 

  • Chessler EJ, Miller DR, Branstetter LR, Galloway LD, Jackson BD, Philip VM, Voy BH, Culiat CT, Threadgill DW, Williams RW et al (2008) The Collaborative Cross at Oak Ridge National Laboratory: developing a powerful resource for systems genetics. Mamm Genome 19:382–389

    Article  Google Scholar 

  • Cheverud JM, Vaughn TT, Pletscher LS, Peripato AC, Adams ES, Erikson CF, King-Ellison KJ (2001) Genetic architecture of adiposity in the cross of LG/J and SM/J inbred mice. Mamm Genome 12:3–12

    Article  PubMed  CAS  Google Scholar 

  • Chiang T, Schultz RM, Lampson MA (2012) Meiotic origins of maternal age-related aneuploidy. Biol Reprod 86:1–7

    Article  PubMed  CAS  Google Scholar 

  • Church DM, Schneider VA, Graves T, Auger K, Cunningham F, Bouk N, Chen HC, Agarwala R, McLaren WM, Ritchie GR et al (2011) Modernizing reference genome assemblies. PLoS Biol 9:e1001091

    Article  PubMed  CAS  Google Scholar 

  • Collaborative Cross Consortium (2012) The genome architecture of the Collaborative Cross mouse genetic reference population. Genetics 190:389–401

    Article  CAS  Google Scholar 

  • Cox A, Ackert-Bicknell CL, Dumont BL, Ding Y, Bell JT, Brockmann GA, Wergedal JE, Bult C, Paigen B, Flint J et al (2009) A new standard genetic map for the laboratory mouse. Genetics 182:1335–1344

    Article  PubMed  CAS  Google Scholar 

  • Daniel A (2002) Distortion of female meiotic segregation and reduced male fertility in human Robertsonian translocations: consistent with the centromere model of co-evolving centromere DNA/centromeric histone (CENP-A). Am J Med Genet 111:450–452

    Article  PubMed  Google Scholar 

  • Danshina PV, Geyer CB, Dai Q, Goulding EH, Willis WD, Kitto GB, McCarrey JR, Eddy EM, O’Brien DA (2010) Phosphoglycerate kinase 2 (PGK2) is essential for sperm function and male fertility in mice. Biol Reprod 82:136–145

    Article  PubMed  CAS  Google Scholar 

  • Didion JP, Yang H, Sheppard K, Fu CP, McMillan L, Pardo-Manuel de Villena F, Churchill GA (2012) Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics 13:34

    Article  PubMed  CAS  Google Scholar 

  • Dietrich WF, Miller J, Steen R, Merchant MA, Damron-Boles D, Husain Z, Dredge R, Daly MJ, Ingalls KA, O’Connor TJ et al (1996) A comprehensive genetic map of the mouse genome. Nature 380:149–152

    Article  PubMed  CAS  Google Scholar 

  • Din W, Anand R, Boursot P, Darviche D, Dod B, Jouvin-Marche E, Orth A, Talwar GP, Cazenave PA, Bonhomme F (1996) Origin and radiation of the house mouse: clues from nuclear genes. J Evol Biol 9:519–539

    Article  CAS  Google Scholar 

  • Dobzhansky T (1973) Nothing in biology makes sense except in the light of evolution. Am Biol Teach 35:125–129

    Article  Google Scholar 

  • Dumont BL, Payseur BA (2011) Genetic analysis of genome-scale recombination rate evolution in house mice. PLoS Genet 7:e1002116

    Article  PubMed  CAS  Google Scholar 

  • Duvaux L, Belkhir K, Boulesteix M, Boursot P (2011) Isolation and gene flow: inferring the speciation history of European house mice. Mol Ecol 20:5248–5264

    Article  PubMed  Google Scholar 

  • Eichler EE, Flint J, Gibson G, Kong A, Leal SM, Moore JH, Nadeau JH (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11:446–450

    Article  PubMed  CAS  Google Scholar 

  • Festing M (1997) Inbred strains of mice: a vital resource for biomedical research. Mouse Genome 95:845–855

    Google Scholar 

  • Flint J, Eskin E (2012) Genome-wide association studies in mice. Nat Rev Genet 13:807–817

    Article  PubMed  CAS  Google Scholar 

  • Frazer KA, Eskin E, Kang HM, Bogue MA, Hinds DA, Beilharz EJ, Gupta RV, Montgomery J, Morenzoni MM, Nilsen GB et al (2007) A sequence-based variation map of 8.27 million SNPs in inbred mouse strains. Nature 448:1050–1053

    Article  PubMed  CAS  Google Scholar 

  • Gabriel SI, Jóhannesdóttir F, Jones EP, Searle JB (2010) Colonization, mouse-style. BMC Biol 8:131

    Article  PubMed  Google Scholar 

  • Gabriel SI, Stevens MI, Mathias MDL, Searle JB (2011) Of mice and “convicts”: origin of the Australian house mouse Mus musculus. PLoS One 6:e28622

    Article  PubMed  CAS  Google Scholar 

  • Geraldes A, Basset P, Gibson B, Smith KL, Harr B, Yu AH-T, Bulatova N, Ziv Y, Nachman MW (2008) Inferring the history of speciation in house mice from autosomal, X-linked, Y-linked and mitochondrial genes. Mol Ecol 17:5349–5363

    Article  PubMed  Google Scholar 

  • Gregorová S, Forejt J (2000) PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies: a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol (Praha) 46:31–41

    Google Scholar 

  • Gregorová S, Divina P, Storchova R, Trachtulec Z, Fotopulosova V, Svenson KL, Donahue LR, Paigen B, Forejt J (2008) Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res 18:509–515

    Article  PubMed  CAS  Google Scholar 

  • Guan C, Ye C, Yang X, Gao J (2010) A review of current large-scale mouse knockout efforts. Genesis 48:73–85

    PubMed  CAS  Google Scholar 

  • Guénet J-L, Bonhomme F (2003) Wild mice: an ever-increasing contribution to a popular mammalian model. Trends Genet 19:24–31

    Article  PubMed  Google Scholar 

  • Hardouin EA, Chapuis JL, Stevens MI, van Vuuren JB, Quillfeldt P, Scavetta RJ, Teschke M, Tautz D (2010) House mouse colonization patterns on the sub-Antarctic Kerguelen Archipelago suggest singular primary invasions and resilience against re-invasion. BMC Evol Biol 10:325

    Article  PubMed  Google Scholar 

  • Harr B (2006) Genomic islands of differentiation between house mouse subspecies. Genome Res 16:730–737

    Article  PubMed  CAS  Google Scholar 

  • Hrbek T, de Brito RA, Wang B, Pletscher LS, Cheverud JM (2006) Genetic characterization of a new set of recombinant inbred lines (LGXSM) formed from the intercross of SM/J and LG/J inbred mouse strains. Mamm Genome 17:417–429

    Article  PubMed  CAS  Google Scholar 

  • Hudson RR, Kaplan NL (1985) Statistical properties of the number of recombination events in the history of a sample of DNA sequences. Genetics 111:147–164

    PubMed  CAS  Google Scholar 

  • Ideraabdullah FY, la Casa-Esperón de E, Bell TA, Detwiler DA, Magnuson TR, Sapienza C, Pardo-Manuel de Villena F (2004) Genetic and haplotype diversity among wild-derived mouse inbred strains. Genome Res 14:1880–1887

    Article  PubMed  CAS  Google Scholar 

  • Jones EP, Jensen JK, Magnussen E, Gregersen N, Hansen HS, Searle JB (2011) A molecular characterization of the charismatic Faroe house mouse. Bio J Linn Soc 102:471–482

    Article  Google Scholar 

  • Jones EP, Skirnisson K, McGovern TH, Gilbert M, Willerslev E, Searle JB (2012) Fellow travellers: a concordance of colonization patterns between mice and men in the North Atlantic region. BMC Evol Biol 12:35

    Article  PubMed  CAS  Google Scholar 

  • Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ, Eskin E (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723

    Article  PubMed  Google Scholar 

  • Keane TM, Goodstadt L, Danecek P, White MA, Wong K, Yalcin B, Heger A, Agam A, Slater G, Goodson M et al (2011) Mouse genomic variation and its effect on phenotypes and gene regulation. Nature 477:289–294

    Article  PubMed  CAS  Google Scholar 

  • Kelada SNP, Aylor DL, Peck BCE, Ryan JF, Tavarez U, Buus RJ, Miller DR, Chesler EJ, Threadgill DW, Churchill GA et al (2012) Genetic analysis of hematological parameters in incipient lines of the Collaborative Cross. G3 2:157–165

    Article  PubMed  Google Scholar 

  • Kirby A, Kang HM, Wade CM, Cotsapas C, Kostem E, Han B, Furlotte N, Kang EY, Rivas M, Bogue MA et al (2010) Fine mapping in 94 inbred mouse strains using a high-density haplotype resource. Genetics 185:1081–1095

    Article  PubMed  CAS  Google Scholar 

  • Kohler RE (1994) Lords of the Fly. University of Chicago Press, Chicago

    Google Scholar 

  • Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ, Dean MD, Smith KL, Schadt EE, Nachman MW (2007) Linkage disequilibrium in wild mice. PLoS Genet 3:e144

    Article  PubMed  CAS  Google Scholar 

  • Li R, Li Y, Zheng H, Luo R, Zhu H, Li Q, Qian W, Ren Y, Tian G, Li J et al (2009a) Building the sequence map of the human pan-genome. Nat Biotechnol 28:57–63

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Willer C, Sanna S, Abecasis G (2009b) Genotype imputation. Annu Rev Genomics Hum Genet 10:387–406

    Article  PubMed  CAS  Google Scholar 

  • Macholán M, Munclinger P, Sugerková M, Dufková P, Bímová B, Bozíková E, Zima J, Piálek J (2007) Genetic analysis of autosomal and X-linked markers across a mouse hybrid zone. Evolution 61:746–771

    Article  PubMed  Google Scholar 

  • Mathes WF, Aylor DL, Miller DR, Churchill GA, Chesler EJ, Pardo-Manuel de Villena F, Threadgill DW, Pomp D (2011) Architecture of energy balance traits in emerging lines of the Collaborative Cross. Am J Physiol Endocrinol Metab 300:E1124–E1134

    Article  PubMed  CAS  Google Scholar 

  • Meerburg BG, Singleton GR, Kijlstra A (2009) Rodent-borne diseases and their risks for public health. Crit Rev Microbiol 35:221–270

    Article  PubMed  Google Scholar 

  • Mihola O, Trachtulec Z, Vlcek C, Schimenti JC, Forejt J (2009) A mouse speciation gene encodes a meiotic histone H3 methyltransferase. Science 323:373–375

    Article  PubMed  CAS  Google Scholar 

  • Moriwaki K, Shiroishi T, Yonekawa H, Miyashita N, Sagai Y (1982) Genetic status of Japanese wild mice and immunological characters of their h-2 antigens. In: Muramatsu T, Gachelin G, Monscona AA, Ikawa Y (eds) Teratocarcinoma and embryonic cell interactions. Japan Scientific Society Press, Tokyo, pp 41–56

    Google Scholar 

  • Mott R, Talbot CJ, Turri MG, Collins AC, Flint J (2000) A method for fine mapping quantitative trait loci in outbred animal stocks. Proc Natl Acad Sci USA 97:12649–12654

    Article  PubMed  Google Scholar 

  • Mural RJ, Adams MD, Myers EW, Smith HO, Miklos GLG, Wides R, Halpern A, Li PW, Sutton GG, Nadeau J et al (2002) A comparison of whole-genome shotgun-derived mouse chromosome 16 and the human genome. Science 296:1661–1671

    Article  PubMed  CAS  Google Scholar 

  • Nachman MW, Boyer SN, Searle JB, Aquadro CF (1994) Mitochondrial DNA variation and the evolution of Robertsonian chromosomal races of house mice, Mus domesticus. Genetics 136:1105–1120

    PubMed  CAS  Google Scholar 

  • Nagamine CM, Nishioka Y, Moriwaki K, Boursot P, Bonhomme F, Lau YF (1992) The musculus-type Y chromosome of the laboratory mouse is of Asian origin. Mamm Genome 3:84–91

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Nellåker C, Keane TM, Yalcin B, Wong K, Agam A, Belgard TG, Flint J, Adams DJ, Frankel WN, Ponting CP (2012) The genomic landscape shaped by selection on transposable elements across 18 mouse strains. Genome Biol 13:R45

    Article  PubMed  CAS  Google Scholar 

  • Nielsen J, Wohlert M (1991) Chromosome abnormalities found among 34,910 newborn children: results from a 13-year incidence study in Arhus, Denmark. Hum Genet 87:81–83

    Article  PubMed  CAS  Google Scholar 

  • Orth A, Belkhir K, Britton-Davidian J, Boursot P, Benazzou T, Bonhomme F (2002) Natural hybridization between two sympatric species of mice Mus musculus domesticus L. and Mus spretus Lataste. C R Biol 325:89–97

    Article  PubMed  CAS  Google Scholar 

  • Paigen K (2003a) One hundred years of mouse genetics: an intellectual history. I. The classical period (1902–1980). Genetics 163:1–7

    PubMed  CAS  Google Scholar 

  • Paigen K (2003b) One hundred years of mouse genetics: an intellectual history. II. The molecular revolution (1981–2002). Genetics 163:1227–1235

    PubMed  CAS  Google Scholar 

  • Paigen K, Eppig JT (2000) A mouse phenome project. Mamm Genome 11:715–717

    Article  PubMed  CAS  Google Scholar 

  • Pamilo P, Nei M (1988) Relationships between gene trees and species trees. Mol Biol Evol 5:568–583

    PubMed  CAS  Google Scholar 

  • Peirce JL, Lu L, Gu J, Silver LM, Williams RW (2004) A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet 5:7

    Article  PubMed  Google Scholar 

  • Petkov PM, Ding Y, Cassell MA, Zhang W, Wagner G, Sargent EE, Asquith S, Crew V, Johnson KA, Robinson P et al (2004) An efficient SNP system for mouse genome scanning and elucidating strain relationships. Genome Res 14:1806–1811

    Article  PubMed  CAS  Google Scholar 

  • Phifer-Rixey M, Bonhomme F, Boursot P, Churchill GA, Piálek J, Tucker PK, Nachman MW (2012) Adaptive evolution and effective population size in wild house mice. Mol Biol Evol 29(10):2949–2955

    Article  PubMed  CAS  Google Scholar 

  • Piálek J, Hauffe HC, Searle JB (2005) Chromosomal variation in the house mouse. Bio J Linn Soc 84:535–563

    Article  Google Scholar 

  • Piálek J, Vyskocilová M, Bímová B, Havelková D, Piálková J, Dufková P, Bencová V, Dureje L, Albrecht T, Hauffe HC et al (2008) Development of unique house mouse resources suitable for evolutionary studies of speciation. J Hered 99:34–44

    Article  PubMed  CAS  Google Scholar 

  • Prager EM, Orrego C, Sage RD (1998) Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen. Genetics 150:835–861

    PubMed  CAS  Google Scholar 

  • Rajabi-Maham H, Orth A, Bonhomme F (2008) Phylogeography and postglacial expansion of Mus musculus domesticus inferred from mitochondrial DNA coalescent, from Iran to Europe. Mol Ecol 17:627–641

    Article  PubMed  CAS  Google Scholar 

  • Rajabi-Maham H, Orth A, Siahsarvie R, Boursot P, Darvish J, Bonhomme F (2012) The south-eastern house mouse Mus musculus castaneus (Rodentia: Muridae) is a polytypic subspecies. Bio J Linn Soc 107:295–306

    Article  Google Scholar 

  • Rat Genome Sequencing Project Consortium (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428:493–521

    Article  CAS  Google Scholar 

  • Sage RD, Atchley WR, Capanna E (1993) House mice as models in systematic biology. Syst Biol 42:523–561

    Article  Google Scholar 

  • Salcedo T, Geraldes A, Nachman MW (2007) Nucleotide variation in wild and inbred mice. Genetics 177:2277–2291

    Article  PubMed  CAS  Google Scholar 

  • Schwarz E, Schwarz HK (1943) The wild and commensal stocks of the house mouse Mus musculus Linnaeus. J Mammal 24:59

    Article  Google Scholar 

  • Shen Y, Yue F, McCleary DF, Ye Z, Edsall L, Kuan S, Wagner U, Dixon J, Lee L, Lobanenkov VV et al (2012) A map of the cis-regulatory sequences in the mouse genome. Nature 488(7409):116–120

    Article  PubMed  CAS  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES et al (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  PubMed  CAS  Google Scholar 

  • Stamatakis A, Ludwig T, Meier H (2005) RAxML-III: a fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics 21:456–463

    Article  PubMed  CAS  Google Scholar 

  • Staubach F, Lorenc A, Messer PW, Tang K, Petrov DA, Tautz D (2012) Genome patterns of selection and introgression of haplotypes in natural populations of the house mouse (Mus musculus). PLoS Genet 8:e1002891

    Article  PubMed  CAS  Google Scholar 

  • Stenseth NC, Leirs H, Skonhoft A, Davis SA, Pech RP, Andreassen HP, Singleton GR, Lima M, Machang’u RS, Makundi RH et al (2003) Mice, rats, and people: the bio-economics of agricultural rodent pests. Front Ecol Environ 1:367–375

    Article  Google Scholar 

  • Suzuki H, Shimada T, Terashima M, Tsuchiya K, Aplin K (2004) Temporal, spatial, and ecological modes of evolution of Eurasian Mus based on mitochondrial and nuclear gene sequences. Mol Phylogenet Evol 33:626–646

    Article  PubMed  CAS  Google Scholar 

  • Svenson KL, Gatti DM, Valdar W, Welsh CE, Cheng R, Chesler EJ, Palmer AA, McMillan L, Churchill GA (2012) High-resolution genetic mapping using the mouse diversity outbred population. Genetics 190:437–447

    Article  PubMed  CAS  Google Scholar 

  • Szatkiewicz JP, Beane GL, Ding Y, Hutchins L, Pardo-Manuel de Villena F, Churchill GA (2008) An imputed genotype resource for the laboratory mouse. Mamm Genome 19:199–208

    Article  PubMed  Google Scholar 

  • Takahashi A, Nishi A, Ishii A, Shiroishi T, Koide T (2008) Systematic analysis of emotionality in consomic mouse strains established from C57BL/6J and wild-derived MSM/Ms. Genes Brain Behav 7:849–858

    Article  PubMed  CAS  Google Scholar 

  • The International HapMap 3 Consortium (2010) Integrating common and rare genetic variation in diverse human populations. Nature 467:52–58

    Article  CAS  Google Scholar 

  • Tucker PK, Sage RD, Warner J, Wilson AC, Eicher EM (1992) Abrupt cline for sex chromosomes in a hybrid zone between two species of mice. Evolution 46:1146

    Article  Google Scholar 

  • Tucker PK, Sandstedt SA, Lundrigan BL (2005) Phylogenetic relationships in the subgenus Mus (genus Mus, family Muridae, subfamily Murinae): examining gene trees and species trees. Bio J Linn Soc 84:653–662

    Article  Google Scholar 

  • Wade CM, Kulbokas EJ, Kirby AW, Zody MC, Mullikin JC, Lander ES, Lindblad-Toh K, Daly MJ (2002) The mosaic structure of variation in the laboratory mouse genome. Nature 420:574–578

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Moore KJ, Zhang Q, Pardo-Manuel de Villena F, Wang W, McMillan L (2010) Genome-wide compatible SNP intervals and their properties. In: Proceedings of the first ACM international conference on bioinformatics and computational biology, Niagara Falls, New York, 2–4 August 2010. Association for Computing Machinery, New York, pp 43–52

  • Wang JR, Pardo-Manuel de Villena F, Lawson HA, Cheverud JM, Churchill GA, McMillan L (2012a) Imputation of single-nucleotide polymorphisms in inbred mice using local phylogeny. Genetics 190:449–458

    Article  PubMed  CAS  Google Scholar 

  • Wang JR, Pardo-Manuel de Villena F, McMillan L (2012b) Comparative analysis and visualization of multiple collinear genomes. BMC Bioinformatics 13(Suppl 3):S13

    PubMed  Google Scholar 

  • Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P, Agarwala R, Ainscough R, Alexandersson M, An P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–562

    Article  PubMed  CAS  Google Scholar 

  • Welsh CE, Miller DR, Manly KF, Wang J, McMillan L, Morahan G, Mott R, Iraqi F, Threadgill DW, Pardo-Manuel de Villena F (2012) Status and access to the Collaborative Cross population. Mamm Genome 23:706–712

    Article  PubMed  Google Scholar 

  • White MA, Ané C, Dewey CN, Larget BR, Payseur BA (2009) Fine-scale phylogenetic discordance across the house mouse genome. PLoS Genet 5:e1000729

    Article  PubMed  CAS  Google Scholar 

  • White MA, Steffy B, Wiltshire T, Payseur BA (2011) Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 189:289–304

    Article  PubMed  CAS  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Wise de Valdez MR, Nimmo D, Betz J, Gong HF, James AA, Alphey L (2011) Black WC4, Genetic elimination of dengue vector mosquitoes. Proc Natl Acad Sci U S A 108:4772–4775

    Article  PubMed  Google Scholar 

  • Wong K, Bumpstead S, Van Der Weyden L, Reinholdt LG, Wilming LG, Adams DJ, Keane TM (2012) Sequencing and characterization of the FVB/NJ mouse genome. Genome Biol 13:R72

    Article  PubMed  Google Scholar 

  • Yalcin B, Fullerton J, Miller S, Keays DA, Brady S, Bhomra A, Jefferson A, Volpi E, Copley RR, Flint J et al (2004) Unexpected complexity in the haplotypes of commonly used inbred strains of laboratory mice. Proc Natl Acad Sci USA 101:9734–9739

    Article  PubMed  CAS  Google Scholar 

  • Yalcin B, Nicod J, Bhomra A, Davidson S, Cleak J, Farinelli L, Østerås M, Whitley A, Yuan W, Gan X et al (2010) Commercially available outbred mice for genome-wide association studies. PLoS Genet 6:e1001085

    Article  PubMed  CAS  Google Scholar 

  • Yalcin B, Wong K, Agam A, Goodson M, Keane TM, Gan X, Nellåker C, Goodstadt L, Nicod J, Bhomra A et al (2011) Sequence-based characterization of structural variation in the mouse genome. Nature 477:326–329

    Article  PubMed  CAS  Google Scholar 

  • Yalcin B, Adams DJ, Flint J, Keane TM (2012a) Next-generation sequencing of experimental mouse strains. Mamm Genome 23(9–10):490–498

    Article  PubMed  CAS  Google Scholar 

  • Yalcin B, Wong K, Bhomra A, Goodson M, Keane TM, Adams DJ, Flint J (2012b) The fine-scale architecture of structural variants in 17 mouse genomes. Genome Biol 13:R18

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Bell TA, Churchill GA, Pardo-Manuel de Villena F (2007) On the subspecific origin of the laboratory mouse. Nat Genet 39:1100–1107

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Ding Y, Hutchins LN, Szatkiewicz J, Bell TA, Paigen BJ, Graber JH, Pardo-Manuel de Villena F, Churchill GA (2009) A customized and versatile high-density genotyping array for the mouse. Nat Methods 6:663–666

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Wang JR, Didion JP, Buus RJ, Bell TA, Welsh CE, Bonhomme F, Yu AH-T, Nachman MW, Piálek J et al (2011) Subspecific origin and haplotype diversity in the laboratory mouse. Nat Genet 43:648–655

    Article  PubMed  CAS  Google Scholar 

  • Yonekawa H, Takahama S (1994) Genetic diversity and geographic distribution of Mus musculus subspecies based on the polymorphism of mitochondrial DNA. In: Moriwaki K, Shiroishi T, Yonekawa H (eds) Genetics in Wild Mice. Japanese Scientific Societies Press, Tokyo, pp 25–40

    Google Scholar 

  • Yonekawa H, Moriwaki K, Gotoh O, Miyashita N, Matsushima Y, Shi LM, Cho WS, Zhen XL, Tagashira Y (1988) Hybrid origin of Japanese mice “Mus musculus molossinus”: evidence from restriction analysis of mitochondrial DNA. Mol Biol Evol 5:63–78

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ping Fu for preparing Supplementary Fig. 6 and to Jeremy Wang and Leonard McMillan for contributing to Box 1. We also thank François Bonhomme and an anonymous reviewer for their comments on an earlier version of the manuscript. JPD is supported by grants from the National Institutes of Health (P50MH090338 and P50HG006582 (to FPMV)). National Institute of General Medical Sciences Centers of Excellence supported critical work reviewed here in the Systems Biology program (Grant GM-076468).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to John P. Didion or Fernando Pardo-Manuel de Villena.

Additional information

Dedicated to Kenneth and Beverly Paigen and François Bonhomme for their outstanding contributions to the field of mouse genetics.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 37,256 kb)

335_2012_9441_MOESM2_ESM.xlsx

Table S1 Strains that have been genotyped at high-density or whole genome sequenced. Providers correspond to labeled circles in Figure 3. Trapping locations are shown for wild-derived strains. References: 1) Yang et al. 2011; 2) Keane et al. 2011; 3) Frazer et al. 2007; 4) Didion et al. 2012; 5) Zhang et al. 2012; 6) Yalcin et al. 2010; 7) Yazbek et al. 2010; 8) The Jackson Laboratory (http://www.jax.org). (XLSX 63 kb)

Glossary of terms

Ancestral polymorphism

A polymorphic locus known to be segregating in the most recent common ancestor of multiple lineages rather than having arisen following their divergence. Note that gene flow may lead to the appearance of ancestral polymorphism

Ascertainment bias

Systematic deviations from an expected theoretical result attributable to the sampling processes used to find (ascertain) SNPs and estimate their population-specific allele frequencies

Classical strain

An inbred laboratory strain derived from a small population of “fancy” mice beginning in the early 20th century

Commensal

A form of symbiosis in which one organism derives a benefit while the other is unaffected. House mice are traditionally called a commensal of humans however their status as economic pest and carriers of disease arguably classifies them as parasites

De novo assembly

Assembling a new genome without using an existing reference genome as a guide. De novo assembly is computationally difficult, but it has the benefit of assembling sequences that reference-guided alignment may miss due to their absence from the reference sequence

Diagnostic marker

A polymorphic marker for which one allele is present in only one population. In human studies, these are often referred to as ancestry-informative markers (AIMs). Alleles that are diagnostic for a single house mouse subspecies are used to assign subspecific origin to regions of the genome

Effective population size

The minimum size of a population that would be required to observe the same dispersion of allele frequencies under random genetic drift or the same amount of inbreeding as the population under consideration

Fancy mice

Mice bred as pets. The breeding of fancy mice selects for traits that are attractive to enthusiasts rather than researchers, such as interesting coat colors and behaviors. Fancy mice comprised the founder population of classical inbred strains

Haplotype

A collection of co-occurring, contiguous alleles. May be used to refer to the alleles at a specific locus or across the entire genome

House mouse

Common name for Mus musculus species. Includes three distinct subspecies: domesticus (Western Europe), musculus (Eastern Europe and North Asia), and castaneus (Southeast Asia). Laboratory mice are of house mouse origin but are a mixture of multiple subspecific origins

Hybrid zone

A boundary between two distinct interbreeding populations. The best-known example is the ~2,500-km-long European transect where M. m. domesticus and M. m. musculus meet

Imputation

A statistical method of deriving the complete sequence of a large number of samples using genotype information to identify matching haplotypes in a small number of reference sequences

Inbred strain

A mouse strain created by successive generations of sibling–sibling or parent–offspring mating, which results in a completely homozygous genome. Until the availability of high-density arrays, the consensus was to declare a strain homozygous after 20 generations of inbreeding

Introgression

The transmission of a novel allele into a population by hybridization followed by backcrossing to one of the parental populations

Monophyly

When a taxon forms a single clade in a phylogeny, meaning that it contains all descendants of the most recent common ancestor of all members of the group

Mosaic genome

A genome derived from multiple distinct ancestries. Mosaicism is identified by haplotype blocks that contain diagnostic alleles. The house mouse is a mosaic of the three M. musculus subspecies, although most of its genome is M. m. domesticus in origin

Mouse

In both colloquial and taxonomic usage the name “mouse” is applied to many different species of small mammals. We use the term strictly to refer to an animal belonging to genus Mus

Nucleotide diversity

The degree of polymorphism within a population. Calculated as the average number of nucleotide differences per site between any two DNA sequences chosen randomly from the sample population

Outbred stock

A heterogeneous strain typically maintained in a colony and allowed to random-mate. Outbred strains are primarily derived from intercrossing classical strains, including fancy mice of Swiss origin

Pan-genome

A consensus reference sequence created by aligning sequences from multiple individuals. Polymorphic sites may be annotated as heterozygous, or the most common allele may be assigned to that position in the consensus sequence

Pseudo-genome

A synthetic genome created by imputation. A new sample is genotyped and compared to multiple, fully assembled reference genomes. In each region, the most similar reference genome is identified, and those regions are concatenated

Reference genome

A whole-genome sequence that is agreed upon as the index for a species. The genome must be fully assembled and given positional annotations. This enables researchers to associate a physical position with genes and other genomic features. A reference genome may be created from a single individual or it may be a consensus of multiple individuals

Single nucleotide polymorphism (SNP)

A site in the genome that is polymorphic within a population

SNP discovery

Comparison of sequence from multiple individuals to identify polymorphic loci

Structural variation

A polymorphism that alters the structure rather than just the content, of the ancestral genome. Insertion and deletion (indels) of bases, ranging from single bases to entire genes, are the most common structural variation. Copy number variation is a special class of indel in which the number of copies of a short tandem repeat increases or decreases between generations

VINO

A type of genotypic marker that represents previously uncharacterized variation. Useful for counteracting ascertainment bias in phylogenetic studies (Didion et al. 2012)

Wild-derived strain

Generally, any laboratory strain that is not descended from the same common genetic pool as classical strains. Most wild-derived strains have been derived from wild-caught mice

Wild mouse

A mouse trapped in nature and not a product of any genetic manipulation or selective breeding

Rights and permissions

Reprints and permissions

About this article

Cite this article

Didion, J.P., de Villena, F.PM. Deconstructing Mus gemischus: advances in understanding ancestry, structure, and variation in the genome of the laboratory mouse. Mamm Genome 24, 1–20 (2013). https://doi.org/10.1007/s00335-012-9441-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9441-z

Keywords

Navigation