Skip to main content

Overview of new developments in and the future of cryopreservation in the laboratory mouse

Abstract

The large-scale mutagenesis programmes underway around the world are generating thousands of novel GA mouse strains that need to be securely archived. In parallel with advances in mutagenesis, the procedures used to cryopreserve mouse stocks are being continually refined in order to keep pace with demand. Moreover, the construction of extensive research infrastructures for systematic phenotyping is fuelling demand for these novel strains of mice and new approaches to the distribution of frozen and unfrozen embryos and gametes are being developed in order to reduce the dependency on the transportation of live mice. This article highlights some contemporary techniques used to archive, rederive, and transport mouse strains around the world.

This is a preview of subscription content, access via your institution.

References

  • Agca Y, Bauer BA, Johnson DK, Critser JK, Riley LK (2007) Detection of mouse parvovirus in Mus musculus gametes, embryos, and ovarian tissues by polymerase chain reaction assay. Comp Med 57:51–56

    PubMed  CAS  Google Scholar 

  • An TZ, Wada S, Edashige K, Sakurai T, Kasai M (1999) Viable spermatozoa can be recovered from refrigerated mice up to 7 days after death. Cryobiology 38:27–34

    PubMed  Article  CAS  Google Scholar 

  • Anzai M, Nishiwaki M, Yanagi M, Nakashima T, Kaneko T, Taguchi Y, Tokoro M, Shin SW, Mitani T, Kato H, Matsumoto K, Nakagata N, Iritani A (2006) Application of laser-assisted zona drilling to in vitro fertilization of cryopreserved mouse oocytes with spermatozoa from a subfertile transgenic mouse. J Reprod Dev 52:601–606

    PubMed  Article  Google Scholar 

  • Barthold SW, Beck DS, Smith AL (1988) Mouse hepatitis-virus and host determinants of vertical transmission and maternally-derived passive-immunity in mice. Arch Virol 100:171–183

    PubMed  Article  CAS  Google Scholar 

  • Bath ML (2003) Simple and efficient in vitro fertilization with cryopreserved C57BL/6J mouse sperm. Biol Reprod 68:19–23

    PubMed  Article  CAS  Google Scholar 

  • Bath ML (2010) Inhibition of in vitro fertilizing capacity of cryopreserved mouse sperm by factors released by damaged sperm, and stimulation by glutathione. PLoS ONE 5:e9387

    PubMed  Article  Google Scholar 

  • Bath ML (2011) Optimized cryopreservation of mouse sperm based on fertilization rate. J Reprod Dev 57:92–98

    PubMed  Article  Google Scholar 

  • Brinster RL, Biggers JD (1965) In vitro fertilization of mouse ova within the explanted fallopian tube. J Reprod Fertil 10:277–279

    PubMed  Article  CAS  Google Scholar 

  • Cox SL, Shaw J, Jenkin G (1996) Transplantation of cryopreserved fetal ovarian tissue to adult recipients in mice. J Reprod Fertil 107:315–322

    PubMed  Article  CAS  Google Scholar 

  • Enginsu ME, Schutze K, Bellanca S, Pensis M, Campo R, Bassil S, Donnez J, Gordts S (1995) Micromanipulation of mouse gametes with laser microbeam and optical tweezers. Hum Reprod 10:1761–1764

    PubMed  CAS  Google Scholar 

  • Fray MD (2009a) Biological methods for archiving and maintaining mutant laboratory mice. Part I: conserving mutant strains. Methods Mol Biol 561:301–319

    PubMed  Article  CAS  Google Scholar 

  • Fray MD (2009b) Biological methods for archiving and maintaining mutant laboratory mice. Part II: recovery and distribution of conserved mutant strains. Methods Mol Biol 561:321–332

    PubMed  Article  CAS  Google Scholar 

  • Glenister PH, Rall WF (2000) Cryopreservation and rederivation of embryos and gametes. In: Jackson IJ, Abbott CM (eds) Mouse genetics and transgenics, a practical approach, chap 2, 2nd edn. Oxford University Press, New York, pp 27–58

    Google Scholar 

  • Glenister PH, Whittingham DG, Lyon MF (1984) Further studies on the effect of radiation during the storage of frozen 8-cell mouse embryos at −96 degrees C. J Reprod Fertil 70:229–234

    PubMed  Article  CAS  Google Scholar 

  • Gunasena KT, Villines PM, Critser ES, Critser JK (1997) Live births after autologous transplant of cryopreserved mouse ovaries. Hum Reprod 12:101–106

    PubMed  Article  CAS  Google Scholar 

  • Jin B, Mochida K, Ogura A, Hotta E, Kobayashi Y, Ito K, Egawa G, Seki S, Honda H, Edashige K, Kasai M (2010) Equilibrium vitrification of mouse embryos. Biol Reprod 82:444–450

    PubMed  Article  CAS  Google Scholar 

  • Kaneko T, Whittingham DG, Overstreet JW, Yanagimachi R (2003) Tolerance of the mouse sperm nuclei to freeze-drying depends on their disulfide status. Biol Reprod 69:1859–1862

    PubMed  Article  CAS  Google Scholar 

  • Kaneko T, Yamamura A, Ide Y, Ogi M, Yanagita T, Nakagata N (2006) Long-term cryopreservation of mouse sperm. Theriogenology 66:1098–1101

    PubMed  Article  CAS  Google Scholar 

  • Kaneko T, Fukumoto K, Haruguchi Y, Kondo T, Machida H, Koga M, Nakagawa Y, Tsuchiyama S, Saiki K, Noshiba S, Nakagata N (2009) Fertilization of C57BL/6 mouse sperm collected from cauda epididymides after preservation or transportation at 4 degrees C using laser-microdissected oocytes. Cryobiology 59:59–62

    PubMed  Article  Google Scholar 

  • Kishikawa H, Tateno H, Yanagimachi R (1999) Fertility of mouse spermatozoa retrieved from cadavers and maintained at 4 degrees C. J Reprod Fertil 116:217–222

    PubMed  Article  CAS  Google Scholar 

  • Kito S, Ohta Y (2005) Medium effects on capacitation and sperm penetration through the zona pellucida in inbred BALB/c spermatozoa. Zygote 13:145–153

    PubMed  Article  CAS  Google Scholar 

  • Kito S, Hayao T, Noguchi-Kawasaki Y, Ohta Y, Uhara H, Tateno S (2004) Improved in vitro fertilization and development by use of modified human tubal fluid and applicability of pronucleate embryos for cryopreservation by rapid freezing in inbred mice. Comp Med 54:564–570

    PubMed  CAS  Google Scholar 

  • Larman MG, Sheehan CB, Gardner DK (2006) Calcium-free vitrification reduces cryoprotectant-induced zona pellucida hardening and increases fertilization rates in mouse oocytes. Reproduction 131:53–61

    PubMed  Article  CAS  Google Scholar 

  • Leibo SP, Semple ME, Kroetsch TG (1994) In vitro fertilisation of oocytes by 37-year-old cryopreserved bovine spermatozoa. Theriogenology 42:429

    Article  Google Scholar 

  • Li C, Mizutani E, Ono T, Terashita Y, Jia XF, Shi HJ, Wakayama T (2011) Intracytoplasmic sperm injection with mouse spermatozoa preserved without freezing for six months can lead to full-term development. Biol Reprod 85:1183–1190

    PubMed  Article  CAS  Google Scholar 

  • Liu L, Nutter LM, Law N, McKerlie C (2009) Sperm freezing and in vitro fertilization in three substrains of C57BL/6 mice. J Am Assoc Lab Anim Sci 48:39–43

    PubMed  CAS  Google Scholar 

  • Mazur P (1990) Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys 17:53–92

    PubMed  CAS  Google Scholar 

  • Mochida K, Ohkawa M, Inoue K, Valdez DM, Kasai M, Ogura A (2005) Birth of mice after in vitro fertilization using C57BL/6 sperm transported within epididymides at refrigerated temperatures. Theriogenology 64:135–143

    PubMed  Article  CAS  Google Scholar 

  • Nakagata N (1989) High survival rate of unfertilized mouse oocytes after vitrification. J Reprod Fertil 87:479–483

    PubMed  Article  CAS  Google Scholar 

  • Nakagata N (1990) Cryopreservation of unfertilized mouse oocytes from inbred strains by ultrarapid freezing. Jikken Dobutsu 39:303–305

    PubMed  CAS  Google Scholar 

  • Nakagata N (1993) Production of normal young following transfer of mouse embryos obtained by in vitro fertilization between cryopreserved gametes. J Reprod Fertil 99:77–80

    PubMed  Article  CAS  Google Scholar 

  • Nakagata N (2000) Cryopreservation of mouse spermatozoa. Mamm Genome 11:572–576

    PubMed  Article  CAS  Google Scholar 

  • Nakagata N, Takeshima T (1992) High fertilizing ability of mouse spermatozoa diluted slowly after cryopreservation. Theriogenology 37:1283–1291

    Article  Google Scholar 

  • Nakagata N, Okamoto M, Ueda O, Suzuki H (1997) Positive effect of partial zona-pellucida dissection on the in vitro fertilizing capacity of cryopreserved C57BL/6J transgenic mouse spermatozoa of low motility. Biol Reprod 57:1050–1055

    PubMed  Article  CAS  Google Scholar 

  • Nakao K, Nakagata N, Katsuki M (1997) Simple and efficient vitrification procedure for cryopreservation of mouse embryos. Exp Anim 46:231–234

    PubMed  Article  CAS  Google Scholar 

  • Nishizono H, Shioda M, Takeo T, Irie T, Nakagata N (2004) Decrease of fertilizing ability of mouse spermatozoa after freezing and thawing is related to cellular injury. Biol Reprod 71:973–978

    PubMed  Article  CAS  Google Scholar 

  • Ogonuki N, Mochida K, Miki H, Inoue K, Fray M, Iwaki T, Moriwaki K, Obata Y, Morozumi K, Yanagimachi R, Ogura A (2006) Spermatozoa and spermatids retrieved from frozen reproductive organs or frozen whole bodies of male mice can produce normal offspring. Proc Natl Acad Sci U S A 103:13098–13103

    PubMed  Article  CAS  Google Scholar 

  • Ogonuki N, Mori M, Shinmen A, Inoue K, Mochida K, Ohta A, Ogura A (2010) The effect on intracytoplasmic sperm injection outcome of genotype, male germ cell stage and freeze-thawing in mice. PLoS ONE 5(6):e11062

    PubMed  Article  Google Scholar 

  • Ogura A, Yamamoto Y, Suzuki O, Takano K, Wakayama T, Mochida K, Kimura H (1996) In vitro fertilization and microinsemination with round spermatids for propagation of nephrotic genes in mice. Theriogenology 45:1141–1149

    PubMed  Article  CAS  Google Scholar 

  • Okamoto M, Nakagata N, Toyoda Y (2001) Cryopreservation and transport of mouse spermatozoa at −79 degrees C. Exp Anim 50:83–86

    PubMed  Article  CAS  Google Scholar 

  • Ostermeier GC, Wiles MV, Farley JS, Taft RA (2008) Conserving, distributing and managing genetically modified mouse lines by sperm cryopreservation. PLoS ONE 3(7):e2792

    PubMed  Article  Google Scholar 

  • Parrott DMV (1958) Fertility of orthotopic ovarian grafts. Stud Fertil 9:137

    Google Scholar 

  • Parrott DMV (1960) The fertility of mice with orthotopic ovarian grafts derived from frozen tissue. J Reprod Fertil 1:230

    Article  Google Scholar 

  • Peters DD, Lepikhov K, Rodenacker K, Marschall S, Boersma A, Hutzler P, Scherb H, Walter J, de Angelis MH (2009) Effect of IVF and laser zona dissection on DNA methylation pattern of mouse zygotes. Mamm Genome 20:664–673

    PubMed  Article  CAS  Google Scholar 

  • Polge C (1951) Functional survival of fowl spermatozoa after freezing at −79 degrees C. Nature 167:949–950

    PubMed  Article  CAS  Google Scholar 

  • Scavizzi F, Raspa M (2004) Tissue distribution and duration of mouse hepatitis virus in naturally infected immunocompetent ICR (CD-1) and immunodeficient athymic nude-nu mouse strains used for ovarian transplantation and in vitro fertilization. Lab Anim 38:189–199

    PubMed  Article  CAS  Google Scholar 

  • Songsasen N, Leibo SP (1997) Cryopreservation of mouse spermatozoa. II. Relationship between survival after cryopreservation and osmotic tolerance of spermatozoa from three strains of mice. Cryobiology 35:255–269

    PubMed  Article  CAS  Google Scholar 

  • Songsasen N, Tong J, Leibo SP (1998) Birth of live mice derived by in vitro fertilization with spermatozoa retrieved up to twenty-four hours after death. J Exp Zool 280:189–196

    PubMed  Article  CAS  Google Scholar 

  • Stacy R, Eroglu A, Fowler A, Biggers J, Toner M (2006) Thermal characterization of Nakagata’s mouse sperm freezing protocol. Cryobiology 52:99–107

    PubMed  Article  CAS  Google Scholar 

  • Sztein J, Sweet H, Farley J, Mobraaten L (1998) Cryopreservation and orthotopic transplantation of mouse ovaries: new approach in gamete banking. Biol Reprod 58:1071–1074

    PubMed  Article  CAS  Google Scholar 

  • Sztein JM, Farley JS, Mobraaten LE (2000) In vitro fertilization with cryopreserved inbred mouse sperm. Biol Reprod 63:1774–1780

    PubMed  Article  CAS  Google Scholar 

  • Taguma K, Nakamura C, Ozaki A, Suzuki C, Hachisu A, Kobayashi K, Mochida K, Ogura A, Kaneda H, Wakana S (2009) A practical novel method for ensuring stable capacitation of spermatozoa from cryopreserved C57BL/6J sperm suspension. Exp Anim 58:395–401

    PubMed  Article  CAS  Google Scholar 

  • Takeo T, Nakagata N (2010) Combination medium of cryoprotective agents containing l-glutamine and methyl-beta-cyclodextrin in a preincubation medium yields a high fertilization rate for cryopreserved C57BL/6J mouse sperm. Lab Anim 44:132–137

    PubMed  Article  CAS  Google Scholar 

  • Takeo T, Nakagata N (2011) Reduced glutathione enhances fertility of frozen/thawed C57BL/6 mouse sperm after exposure to methyl-beta-cyclodextrin. Biol Reprod 85:1066–1072

    PubMed  Article  CAS  Google Scholar 

  • Takeo T, Hoshii T, Kondo Y, Toyodome H, Arima H, Yamamura K, Irie T, Nakagata N (2008) Methyl-beta-cyclodextrin improves fertilizing ability of C57BL/6 mouse sperm after freezing and thawing by facilitating cholesterol efflux from the cells. Biol Reprod 78:546–551

    PubMed  Article  CAS  Google Scholar 

  • Takeo T, Kaneko T, Haruguchi Y, Fukumoto K, Machida H, Koga M, Nakagawa Y, Takeshita Y, Matsuguma T, Tsuchiyama S, Shimizu N, Hasegawa T, Goto M, Miyachi H, Anzai M, Nakatsukasa E, Nomaru K, Nakagata N (2009) Birth of mice from vitrified/warmed 2-cell embryos transported at a cold temperature. Cryobiology 58:196–202

    PubMed  Article  Google Scholar 

  • Takeo T, Kondo T, Haruguchi Y, Fukumoto K, Nakagawa Y, Takeshita Y, Nakamuta Y, Tsuchiyama S, Shimizu N, Hasegawa T, Goto M, Miyachi H, Anzai M, Fujikawa R, Nomaru K, Kaneko T, Itagaki Y, Nakagata N (2010) Short-term storage and transport at cold temperatures of 2-cell mouse embryos produced by cryopreserved sperm. J Am Assoc Lab Anim Sci 49:415–419

    PubMed  CAS  Google Scholar 

  • Tatone C, Di Emidio G, Barbaro R, Vento M, Ciriminna R, Artini PG (2011) Effects of reproductive aging and postovulatory aging on the maintenance of biological competence after oocyte vitrification: insights from the mouse model. Theriogenology 76:864–873

    PubMed  Article  Google Scholar 

  • Thornton CE, Brown SD, Glenister PH (1999) Large numbers of mice established by in vitro fertilization with cryopreserved spermatozoa: implications and applications for genetic resource banks, mutagenesis screens, and mouse backcrosses. Mamm Genome 10:987–992

    PubMed  Article  CAS  Google Scholar 

  • Wakayama T, Yanagimachi R (1998) Development of normal mice from oocytes injected with freeze-dried spermatozoa. Nat Biotechnol 16:639–641

    PubMed  Article  CAS  Google Scholar 

  • Wang XQ, Catt S, Pangestu M, Temple-Smith P (2009) Live offspring from vitrified blastocysts derived from fresh and cryopreserved ovarian tissue grafts of adult mice. Reproduction 138:527–535

    PubMed  Article  CAS  Google Scholar 

  • Wang XQ, Catt S, Pangestu M, Temple-Smith P (2011) Successful in vitro culture of pre-antral follicles derived from vitrified murine ovarian tissue: oocyte maturation, fertilization, and live births. Reproduction 141:183–191

    PubMed  Article  CAS  Google Scholar 

  • Ward MA, Kaneko T, Kusakabe H, Biggers JD, Whittingham DG, Yanagimachi R (2003) Long-term preservation of mouse spermatozoa after freeze-drying and freezing without cryoprotection. Biol Reprod 69:2100–2108

    PubMed  Article  CAS  Google Scholar 

  • Whittingham DG (1977) Fertilization in vitro and development to term of unfertilized mouse oocytes previously stored at −196 degrees C. J Reprod Fertil 49:89–94

    PubMed  Article  CAS  Google Scholar 

  • Whittingham DG, Leibo SP, Mazur P (1972) Survival of mouse embryos frozen to −196 degrees and −269 degrees C. Science 178:411–414

    PubMed  Article  CAS  Google Scholar 

  • Wilmut I (1972) The effect of cooling rate, warming rate, cryoprotective agent and stage of development on survival of mouse embryos during freezing and thawing. Life Sci II 11:1071–1079

    PubMed  Article  CAS  Google Scholar 

  • Yildiz C, Ottaviani P, Law N, Ayearst R, Liu L, McKerlie C (2007) Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction 133:585–595

    PubMed  Article  CAS  Google Scholar 

URLs to Key Resources and/or Software

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin D. Fray.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guan, M., Marschall, S., Raspa, M. et al. Overview of new developments in and the future of cryopreservation in the laboratory mouse. Mamm Genome 23, 572–579 (2012). https://doi.org/10.1007/s00335-012-9423-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9423-1

Keywords

  • Embryo Transfer
  • Fertilisation Rate
  • Zona Pellucida
  • Oocyte Donor
  • Laser Drilling