Skip to main content

Web-based digital gene expression atlases for the mouse


Over the past 15 years the publicly available mouse gene expression data determined by in situ hybridization have dramatically increased in scope and spatiotemporal resolution. As a consequence of resources and tools available in the post-genomic era, full transcriptomes in the mouse brain and in the mouse embryo can be studied. Here we introduce and discuss seven current databases (MAMEP, EMBRYS, GenePaint, EURExpress, EuReGene, BGEM, and GENSAT) that grant access to large collections of expression data in mouse. We review the experimental focus, coverage, data assessment, and annotation for each of these databases and the implementation of analytic tools and links to other relevant databases. We provide a user-oriented summary of how to interrogate each database.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  • Ashburner M, Ball C, Blake J, Botstein D (2000) Gene ontology: tool for the unification of biology. Nature 25:25–29

    CAS  Google Scholar 

  • Blackshaw S, Harpavat S, Trimarchi J, Cai L, Huang H, Kuo WP et al (2004) Genomic analysis of mouse retinal development. PLoS Biol 2:E247

    PubMed  Article  Google Scholar 

  • Carson JP, Thaller C, Eichele G (2002) A transcriptome atlas of the mouse brain at cellular resolution. Curr Opin Neurobiol 12:562–565

    PubMed  Article  CAS  Google Scholar 

  • Carson JP, Ju T, Lu HC, Thaller C, Xu M, Pallas SL et al (2005) A digital atlas to characterize the mouse brain transcriptome. PLoS Comput Biol 1:e41

    PubMed  Article  Google Scholar 

  • de Boer B, Ruijter JM, Voorbraak FPJM, Moorman AFM (2009) More than a decade of developmental gene expression atlases: where are we now? Nucleic Acids Res 37:7349–7359

    PubMed  Article  Google Scholar 

  • Diez-Roux G, Banfi S, Sultan M, Geffers L, Anand S, Rozado D et al (2011) A high-resolution anatomical atlas of the transcriptome in the mouse embryo. PLoS Biol 9:e1000582

    PubMed  Article  CAS  Google Scholar 

  • Finger JH, Smith CM, Hayamizu TF, McCright IJ, Eppig JT, Kadin J, Richardson JE, Ringwald M (2011) The mouse Gene Expression Database (GXD): 2011 update. Nucleic Acids Res 39:D835–D841

    PubMed  Article  Google Scholar 

  • García-Lax N, Tomás-Roca L, Marín F (2012) Developmental expression pattern of Hspb8 mRNA in the mouse brain: analysis through online databases. Anat Rec (Hoboken) 295:492–503

    Article  Google Scholar 

  • Geschwind DH, Konopka G (2009) Neuroscience in the era of functional genomics and systems biology. Nature 461:908–915

    PubMed  Article  CAS  Google Scholar 

  • Gofflot F, Chartoire N, Vasseur L, Heikkinen S, Dembele D, Le Merrer J, Auwerx J (2007) Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 131:405–418

    PubMed  Article  CAS  Google Scholar 

  • Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925

    PubMed  Article  CAS  Google Scholar 

  • Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 27:9817–9823

    PubMed  Article  CAS  Google Scholar 

  • Gray P, Fu H, Luo P, Zhao Q, Yu J, Ferrari A et al (2004) Mouse brain organization revealed through direct genome-scale TF expression analysis. Science 306:2255–2257

    PubMed  Article  CAS  Google Scholar 

  • Heintz N (2004) Gene expression nervous system atlas (GENSAT). Nat Neurosci 7:483

    PubMed  Article  CAS  Google Scholar 

  • Kasprzyk A (2011) BioMart: driving a paradigm change in biological data management. Database (Oxford) 2011:bar049

  • Lein ES, Hawrylycz MJ, Ao N, Ayres M, Bensinger A, Bernard A et al (2007) Genome-wide atlas of gene expression in the adult mouse brain. Nature 445:168–176

    PubMed  Article  CAS  Google Scholar 

  • Magdaleno S, Jensen P, Brumwell CL, Seal A, Lehman K, Asbury A et al (2006) BGEM: an in situ hybridization database of gene expression in the embryonic and adult mouse nervous system. PLoS Biol 4:e86

    PubMed  Article  Google Scholar 

  • Martinez-Ferre A, Martinez S (2012) Molecular regionalization of the diencephalon. Front Neurosci 6:73

    PubMed  Article  Google Scholar 

  • Ng L, Pathak SD, Kuan C, Lau C, Dong H-wei, Sodt A et al (2007) Neuroinformatics for genome-wide 3D gene expression mapping in the mouse brain. IEEE/ACM Trans Comput Biol Bioinform 4:382–393

    PubMed  Article  CAS  Google Scholar 

  • Qi L, Chen K, Hur DJ, Yagnik G, Lakshmanan Y, Kotch LE et al (2011) Genome-wide expression profiling of urinary bladder implicates desmosomal and cytoskeletal dysregulation in the bladder exstrophy-epispadias complex. Int J Mol Med 27:755–765

    PubMed  Google Scholar 

  • Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE et al (2008) Organization of the pronephric kidney revealed by large-scale gene expression mapping. Genome Biol 9:R84

    PubMed  Article  Google Scholar 

  • Richardson L, Venkataraman S, Stevenson P, Yang Y, Burton N, Rao J et al (2010) EMAGE mouse embryo spatial Gene Expression Database: 2010 update. Nucleic Acids Res 38:D703–D709

    PubMed  Article  CAS  Google Scholar 

  • Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, Roska B (2009) Genetic address book for retinal cell types. Nat Neurosci 12:1197–1204

    PubMed  Article  CAS  Google Scholar 

  • Sunkin SM, Hohmann JG (2007) Insights from spatially mapped gene expression in the mouse brain. Hum Mol Genet 16 Spec No:R209–R219

    Google Scholar 

  • Visel A, Thaller C, Eichele G (2004) an atlas of gene expression patterns in the mouse embryo. Nucleic Acids Res 32:D552–D556

    PubMed  Article  CAS  Google Scholar 

  • Visel A, Carson J, Oldekamp J, Warnecke M, Jakubcakova V, Zhou X, Shaw C, Alvarez-Bolado G, Eichele G (2007) Regulatory pathway analysis by high-throughput in situ hybridization. PLoS Genet 3:1867–1883

    PubMed  Article  CAS  Google Scholar 

  • Yaylaoglu MB, Titmus A, Visel A, Alvarez-Bolado G, Thaller C, Eichele G (2005) Comprehensive expression atlas of fibroblast growth factors and their receptors generated by a novel robotic in situ hybridization platform. Dev Dyn 234:371–386

    PubMed  Article  CAS  Google Scholar 

  • Yokoyama S, Ito Y, Ueno-Kudoh H, Shimizu H, Uchibe K, Albini S et al (2009) A systems approach reveals that the myogenesis genome network is regulated by the transcriptional repressor RP58. Dev Cell 17:836–848

    PubMed  Article  CAS  Google Scholar 

Download references


The authors are supported by the Max Planck Society for the Advancement of Science.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Gregor Eichele.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Geffers, L., Herrmann, B. & Eichele, G. Web-based digital gene expression atlases for the mouse. Mamm Genome 23, 525–538 (2012).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Gene Expression Database
  • EGFP Reporter
  • Context Menu
  • Montage Viewer
  • Digital Atlas