Skip to main content

Computational tools for comparative phenomics: the role and promise of ontologies

Abstract

A major aim of the biological sciences is to gain an understanding of human physiology and disease. One important step towards such a goal is the discovery of the function of genes that will lead to a better understanding of the physiology and pathophysiology of organisms, which will ultimately lead to better diagnosis and therapy. Our increasing ability to phenotypically characterise genetic variants of model organisms coupled with systematic and hypothesis-driven mutagenesis is resulting in a wealth of information that could potentially provide insight into the functions of all genes in an organism. The challenge we are now facing is to develop computational methods that can integrate and analyse such data. The introduction of formal ontologies that make their semantics explicit and accessible to automated reasoning provides the tantalizing possibility of standardizing biomedical knowledge allowing for novel, powerful queries that bridge multiple domains, disciplines, species, and levels of granularity. We review recent computational approaches that facilitate the integration of experimental data from model organisms with clinical observations in humans. These methods foster novel cross-species analysis approaches, thereby enabling comparative phenomics and leading to the potential of translating basic discoveries from the model systems into diagnostic and therapeutic advances at the clinical level.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  • No Author (2010) Mouse megascience. Nature 465(7298):526

  • Abbott A (2010b) Mouse project to find each gene’s role. Nature 465(7297):410

    PubMed  Article  CAS  Google Scholar 

  • Al-Hasani K, Vadolas J, Knaupp A, Wardan H, Voullaire L, Williamson R, Ioannou P (2005) A 191-kb genomic fragment containing the human α-globin locus can rescue α-thalassemic mice. Mamm Genome 16:847–853

    PubMed  Article  CAS  Google Scholar 

  • Amberger J, Bocchini C, Hamosh A (2011) A new face and new challenges for Online Mendelian Inheritance in Man (OMIM®). Hum Mutat 32:564–567

    PubMed  Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry MJ, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Tarver LI, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    PubMed  Article  CAS  Google Scholar 

  • Baader F, Lutz C, Suntisrivaraporn B (2005) Is tractable reasoning in extensions of the description logic EL useful in practice? In: Proceedings of the Methods for Modalities Workshop (M4M-05), Berlin, Germany

  • Baader F, Lutz C, Suntisrivaraporn B (2006) CEL: a polynomial-time reasoner for life science ontologies. In: Furbach U, Shankar N (eds), Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06), Seattle, WA, August 17–20, 2006. Lecture Notes in Computer Science 4130:287–291

  • Bada M, Stevens R, Goble C, Gil Y, Ashburner M, Blake JA, Cherry MJ, Harris M, Lewis S (2004) A short study on the success of the gene ontology. Web Semant 1(2):235–240

    Article  Google Scholar 

  • Barwise J (1989) The situation in logic. CSLI Publications, Stanford

    Google Scholar 

  • Barwise J, Etchemendy J (2002) Language, proof and logic. CSLI Publications, Stanford

    Google Scholar 

  • Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome DatabaseGroup (2011) The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 39(suppl 1):D842–D848

    PubMed  Article  Google Scholar 

  • Bodenreider O, Hayamizu TF, Ringwald M, DeCoronado S, Zhang S (2005) Of mice and men: aligning mouse and human anatomies. AMIA Annu Symp Proc 2005:61–65

    Google Scholar 

  • Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Howe DG, Knight J, Mani P, Martin R, Moxon SA, Paddock H, Pich C, Ramachandran S, Ruef BJ, Ruzicka L, Schaper HB, Schaper K, Shao X, Singer A, Sprague J, Sprunger B, VanSlyke C, Westerfield M (2011) ZFIN: enhancements and updates to the zebrafish model organism database. Nucleic Acids Res 39(Database issue): D822–D829

    Google Scholar 

  • Brown S, Moore M (2012) Towards an encyclopaedia of gene function: the International Mouse Phenotyping Consortium. Dis Model Mech 5(3):289–292

    PubMed  Article  CAS  Google Scholar 

  • Burgun A, Mougin F, Bodenreider O (2009) Two approaches to integrating phenotype and clinical information. AMIA Annu Symp Proc 2009:75–79

    PubMed  Google Scholar 

  • Ceusters W, Elkin P, Smith B (2006) Referent tracking: the problem of negative findings. Stud Health Technol Inform 124:741–746

    PubMed  Google Scholar 

  • Chen J, Xu H, Aronow B, Jegga A (2007) Improved human disease candidate gene prioritization using mouse phenotype. BMC Bioinform 8(1):392

    Article  Google Scholar 

  • Chen J, Bardes EE, Aronow BJ, Jegga AG (2009) ToppGene suite for gene list enrichment analysis and candidate gene prioritization. Nucl Acids Res 37(Web Server issue):W305–W311

    PubMed  Article  CAS  Google Scholar 

  • Collins FS, Finnell RH, Rossant J, Wurst W (2007) A new partner for the international knockout mouse consortium. Cell 129(2):235

    PubMed  Article  CAS  Google Scholar 

  • Cook DL, Bookstein FL, Gennari JH (2011) Physical properties of biological entities: an introduction to the ontology of physics for biology. PLoS One 6(12):e28708

    PubMed  Article  CAS  Google Scholar 

  • Drysdale R, FlyBase Consortium (2008) FlyBase: a database for the Drosophila research community. Methods Mol Biol 420:45–59

    PubMed  Article  CAS  Google Scholar 

  • Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM (2010) Saccharomyces genome database provides mutant phenotype data. Nucl Acids Res 38(Database issue):D433–D436

    PubMed  Article  CAS  Google Scholar 

  • Espinosa O, Hancock JM (2011) A gene-phenotype network for the laboratory mouse and its implications for systematic phenotyping. PLoS One 6(5):e19693

    PubMed  Article  CAS  Google Scholar 

  • Fawcett T (2006) An introduction to ROC analysis. Pattern Recognit Lett 27(8):861–874

    Article  Google Scholar 

  • Gkoutos GV (2006) Towards a phenotypic semantic web. Curr Bioinform 1(2):235–246

    Article  CAS  Google Scholar 

  • Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D (2004) Building mouse phenotype ontologies. Pac Symp Biocomput 2004:178–189

    Google Scholar 

  • Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D (2005) Using ontologies to describe mouse phenotypes. Genome Biol 6(1):R8

    PubMed  Article  Google Scholar 

  • Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41(5):687–693

    PubMed  Article  Google Scholar 

  • Golbreich C, Horrocks I (2007) The obo to owl mapping, go to owl 1.1! In: Golbreich C, Kalyanpur A, Parsia B (eds), Proceedings of OWL: Experiences and Directions(OWLED-2007), Innsbruck, Austria, 6–7 June 2007.CEUR Workshop Proceedings 258, CEUR-WS.org

  • Grau B, Horrocks I, Motik B, Parsia B, Patelschneider P, Sattler U (2008) OWL 2: the next step for OWL. Web Semant 6(4):309–322

    Article  Google Scholar 

  • Groth P, Weiss B (2006) Phenotype data: a neglected resource in biomedical research? Curr Bioinform 1(3):347–358

    Article  CAS  Google Scholar 

  • Groth P, Pavlova N, Kalev I, Tonov S, Georgiev G, Pohlenz HD, Weiss B (2007) PhenomicDB: a new cross-species genotype/phenotype resource. Nucl Acids Res 35(Database issue):D696–D699

    PubMed  Article  CAS  Google Scholar 

  • Gruber TR (1993) Toward principles for the design of ontologies used for knowledge sharing. In: Guarino N, Poli R (eds) Formal ontology in conceptual analysis and knowledge representation. Kluwer Academic, Deventer

    Google Scholar 

  • Gruber TR (1995) Toward principles for the design of ontologies used for knowledge sharing. Int J Hum Comput Stud 43(5–6):909–928

    Google Scholar 

  • Guarino N (1998) Formal ontology and information systems. In: Guarino N (ed), Proceedings of the 1st International Conference on Formal Ontologies in Information Systems. IOS Press, Amsterdam, pp 3–15

  • Harris TW, Antoshechkin I, Bieri T, Blasiar D, Chan J, Chen WJ, De La Cruz N, Davis P, Duesbury M, Fang R, Fernandes J, Han M, Kishore R, Lee R, Müller HM, Nakamura C, Ozersky P, Petcherski A, Rangarajan A, Rogers A, Schindelman G, Schwarz EM, Tuli MA, Van Auken K, Wang D, Wang X, Williams G, Yook K, Durbin R, Stein LD, Sternberg PW, Spieth J (2010) WormBase: a comprehensive resource for nematode research. Nucl Acids Res 38(suppl 1):D463–D467

    PubMed  Article  CAS  Google Scholar 

  • Hernandez-Boussard T, Whirl-Carrillo M, Hebert JM, Gong L, Owen R, Gong M, Gor W, Liu F, Truong C, Whaley R, Woon M, Zhou T, Altman RB, Klein TE (2008) The pharmacogenetics and pharmacogenomics knowledge base: accentuating the knowledge. Nucl Acids Res 36(Database issue):D913–D918

    PubMed  CAS  Google Scholar 

  • Herre H, Heller B, Burek P, Hoehndorf R, Loebe F, Michalek H (2006) General Formal Ontology (GFO): A foundational ontology integrating objects and processes version 1.0, Onto-Med Report8, IMISE, University of Leipzig, Leipzig, Germany

  • Hilbert D (1918) Axiomatisches Denken. Math Ann 78:405–415

    Article  Google Scholar 

  • Hoehndorf R, Loebe F, Kelso J, Herre H (2007) Representing default knowledge in biomedical ontologies: application to the integration of anatomy and phenotype ontologies. BMC Bioinform 8(1):377

    Article  Google Scholar 

  • Hoehndorf R, Kelso J, Herre H (2009) The ontology of biological sequences. BMC Bioinform 10(1):377

    Article  Google Scholar 

  • Hoehndorf R, Oellrich A, Dumontier M, Kelso J, Rebholz-Schuhmann D, Herre H (2010a) Relations as patterns: bridging the gap between OBO and OWL. BMC Bioinform 11(1):441

    Article  Google Scholar 

  • Hoehndorf R, Oellrich A, Rebholz-Schuhmann D (2010b) Interoperability between phenotype and anatomy ontologies. Bioinformatics 26(24):3112–3118

    PubMed  Article  CAS  Google Scholar 

  • Hoehndorf R, Batchelor C, Bittner T, Dumontier M, Eilbeck K, Knight R, Mungall CJ, Richardson JS, Stombaugh J, Westhof E, Zirbel CL, Leontis NB (2011a) The RNA ontology (RNAO): an ontology for integrating RNA sequence and structure data. Appl Ontol 6(1):53–89

    Google Scholar 

  • Hoehndorf R, Dumontier M, Gennari JH, Wimalaratne S, de Bono B, Cook DL, Gkoutos GV (2011b) Integrating systems biology models and biomedical ontologies. BMC Syst Biol 5(1):124

    PubMed  Article  Google Scholar 

  • Hoehndorf R, Dumontier M, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV (2011c) Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning. PLoS One 6(7):e22006

    PubMed  Article  CAS  Google Scholar 

  • Hoehndorf R, Dumontier M, Oellrich A, Wimalaratne S, Rebholz-Schuhmann D, Schofield P, Gkoutos GV (2011d) A common layer of interoperability for biomedical ontologies based on OWL EL. Bioinformatics 27(7):1001–1008

    PubMed  Article  CAS  Google Scholar 

  • Hoehndorf R, Schofield PN, Gkoutos GV (2011) Phenomebrowser. Available at http://phenomebrowser.net. Accessed 5 Mar 2012

  • Hoehndorf R, Schofield PN, Gkoutos GV (2011f) Phenomenet: a whole-phenome approach to disease gene discovery. Nucl Acids Res 39(18):e119

    PubMed  Article  CAS  Google Scholar 

  • Hoehndorf R, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV (2012) Linking pharmgkb to phenotype studies and animal models of disease for drug repurposing. Pac Symp Biocomput 2012:388–399

    Google Scholar 

  • Horrocks I (2007) OBO flat file format syntax and semantics and mapping to OWL Web Ontology Language. Technical report, University of Manchester, March 2007. Available at http://www.cs.man.ac.uk/~horrocks/obo/. Accessed 5 Mar 2012

  • ISO (2007) Information technology: common logic (cl): a framework for a family of logic-based languages. Technical report

  • Kazakov Y (2009) Consequence-driven reasoning for Horn SHIQ ontologies. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI 09), Pasadena, CA, July 11–17, 2009, pp 2040–2045

  • Kazakov Y, Krötzsch M, Simančík F (2011) Unchain my EL reasoner. In: Proceedings of the 23rd International Workshop on Description Logics (DL10), CEUR Workshop Proceedings, vol 573, CEUR-WS.org

  • Kitsios GD, Tangri N, Castaldi PJ, Ioannidis JP (2010) Laboratory mouse models for the human genome-wide associations. PLoS One 5(11):e13782

    PubMed  Article  Google Scholar 

  • Kutz O, Mossakowski T (2011) A modular consistency proof for dolce. In AAAI

  • Lander ES (2011) Initial impact of the sequencing of the human genome. Nature 470(7333):187–197

    PubMed  Article  CAS  Google Scholar 

  • Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nat Rev Mol Cell Biol 8(12):995–1005

    PubMed  Article  CAS  Google Scholar 

  • Loewenstein Y, Raimondo D, Redfern O, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10(2):207

    PubMed  Article  Google Scholar 

  • Masuya H, Makita Y, Kobayashi N, Nishikata K, Yoshida Y, Mochizuki Y, Doi K, Takatsuki T, Waki K, Tanaka N, Ishii M, Matsushima A, Takahashi S, Hijikata A, Kozaki K, Furuichi T, Kawaji H, Wakana S, Nakamura Y, Yoshiki A, Murata T, Fukami-Kobayashi K, Mohan S, Ohara O, Hayashizaki Y, Mizoguchi R, Obata Y, Toyoda T (2011) The RIKEN integrated database of mammals. Nucl Acids Res 39(suppl 1):D861–D870

    PubMed  Article  Google Scholar 

  • McGary KL, Park TJ, Woods JO, Cha HJ, Wallingford JB, Marcotte EM (2010) Systematic discovery of nonobvious human disease models through orthologous phenotypes. Proc Natl Acad Sci USA 107(14):6544–6549

    PubMed  Article  CAS  Google Scholar 

  • Motik B, Grau BC, Horrocks I, Wu Z, Fokoue A, Lutz C (2009) Owl 2 web ontology language: Profiles. W3C Recommendation, 27 October 2009. Available at http://www.w3.org/TR/owl-profiles/. Accessed 5 Mar 2012

  • Motik B, Shearer R, Horrocks I (2009b) Hypertableau reasoning for description logics. J Artif Intell Res 36:165–228

    Google Scholar 

  • Mungall CJ (2011) OBO flat file format 1.4 syntax and semantics draft. Technical report, Lawrence Berkeley National Laboratory. Available at http://berkeleybop.org/~cjm/obo2owl/obo-syntax.html. Accessed 5 Mar 2012

  • Mungall C, Gkoutos G, Smith C, Haendel M, Lewis S, Ashburner M (2010) Integrating phenotype ontologies across multiple species. Genome Biol 11(1):R2

    PubMed  Article  Google Scholar 

  • Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, Hill DP, Lomax J (2011a) Cross-product extensions of the gene ontology. J Biomed Inform 44(1):80–86

    PubMed  Article  Google Scholar 

  • Mungall CJ, Batchelor C, Eilbeck K (2011b) Evolution of the sequence ontology terms and relationships. J Biomed Inform 44(1):87–93

    PubMed  Article  Google Scholar 

  • Oti M, Brunner HG (2007) The modular nature of genetic diseases. Clin Genet 71:1–11

    PubMed  Article  CAS  Google Scholar 

  • Oti M, Huynen MA, Brunner HG (2009) The biological coherence of human phenome databases. Am J Hum Genet 85(6):801–808

    PubMed  Article  CAS  Google Scholar 

  • Rector AL (2003) Modularisation of domain ontologies implemented in description logics and related formalisms including owl. In: K-CAP ’03: Proceedings of the 2nd International Conference on Knowledge Capture, Sanibel Island, FL, October 23–25, 2003, ACM Press, New York, pp 121–128

  • Robinson PN, Koehler S, Bauer S, Seelow D, Horn D, Mundlos S (2008) The human phenotype ontology: a tool for annotating and analyzing human hereditary disease. Am J Hum Genet 83(5):610–615

    PubMed  Article  CAS  Google Scholar 

  • Ruttenberg A, Clark T, Bug W, Samwald M, Bodenreider O, Chen H, Doherty D, Forsberg K, Gao Y, Kashyap V, Kinoshita J, Luciano J, Marshall MS, Ogbuji C, Rees J, Stephens S, Wong G, Wu E, Zaccagnini D, Hongsermeier T, Neumann E, Herman I, Cheung KH (2007) Advancing translational research with the Semantic Web. BMC Bioinform 8(Suppl 3):S2

    Article  Google Scholar 

  • Sardana D, Vasa S, Vepachedu N, Chen J, Gudivada RC, Aronow BJ, Jegga AG (2010) PhenoHM: human-mouse comparative phenome-genome server. Nucl Acids Res 38(Web Server issue):W165–W174

    PubMed  Article  CAS  Google Scholar 

  • Schindelman G, Fernandes J, Bastiani C, Yook K, Sternberg P (2011) Worm phenotype ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinform 12(1):32

    Article  CAS  Google Scholar 

  • Schofield PN, Hoehndorf R, Gkoutos GV (2012) Mouse genetic and phenotypic resources for human genetics. Hum Mutat 33(5):826–836

    PubMed  Article  Google Scholar 

  • Schulz S, Suntisrivaraporn B, Baader F, Boeker M (2009) SNOMED reaching its adolescence: ontologists’ and logicians’ health check. Int J Med Inform 78(Suppl 1):S86–S94

    PubMed  Article  Google Scholar 

  • Sirin E, Parsia B (2004) Pellet: An OWL DL reasoner. In: Haarslev V, Möller R(eds), Proceedings of the 2004 International Workshop on Description Logics, DL2004, Whistler, British Columbia, Canada, June 6–8, 2004, CEUR Workshop Proceedings, vol 104. Aachen, Germany:CEUR-WS.org

  • Skarnes WC, Rosen B, West AP, Koutsourakis M, Bushell W, Iyer V, Mujica AO, Thomas M, Harrow J, Cox T, Jackson D, Severin J, Biggs P, Fu J, Nefedov M, de Jong PJ, Stewart AF, Bradley A (2011) A conditional knockout resource for the genome-wide study of mouse gene function. Nature 474(7351):337–342

    PubMed  Article  CAS  Google Scholar 

  • Smedley D, Swertz MA, Wolstencroft K, Proctor G, Zouberakis M, Bard J, Hancock JM, Schofield P (2008) Solutions for data integration in functional genomics: a critical assessment and case study. Brief Bioinform 9(6):532–544

    PubMed  Article  CAS  Google Scholar 

  • Smith CL, Goldsmith CAW, Eppig JT (2004) The mammalian phenotype ontology as a tool for annotating, analyzing and comparing phenotypic information. Genome Biol 6(1):R7

    PubMed  Article  Google Scholar 

  • Smith B, Ceusters W, Klagges B, Köhler J, Kumar A, Lomax J, Mungall C, Neuhaus F, Rector AL, Rosse C (2005) Relations in biomedical ontologies. Genome Biol 6(5):R46

    PubMed  Article  Google Scholar 

  • Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg LJ, Eilbeck K, Ireland A, Mungall CJ, Leontis N, Serra PR, Ruttenberg A, Sansone SA, Shah N, Scheuermann RH, Whetzel PL, Lewis S (2007) The OBO Foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotech 25(11):1251–1255

    Article  CAS  Google Scholar 

  • Sowa JF (2000) Knowledge representation: logical, philosophical and computational foundations. Brooks/Cole, Pacific Grove

    Google Scholar 

  • Sprague J, Bayraktaroglu L, Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Haendel M, Howe DG, Knight J, Mani P, Moxon SA, Pich C, Ramachandran S, Schaper K, Segerdell E, Shao X, Singer A, Song P, Sprunger B, Van Slyke CE, Westerfield M (2007) The Zebrafish Information Network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res 36(Database Issue):D768–D772

    PubMed  Article  Google Scholar 

  • Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    PubMed  Article  CAS  Google Scholar 

  • Suntisrivaraporn B (2008) Empirical evaluation of reasoning in lightweight DLs on life science ontologies. In: Proceedings of the 2nd Mahasarakham International Workshop on AI (MIWAI’08). Mahasarakham University, Mahasarakham, Thailand

  • Thorisson GA, Muilu J, Brookes AJ (2009) Genotype-phenotype databases: challenges and solutions for the post-genomic era. Nat Rev Genet 10(1):9–18

    PubMed  Article  CAS  Google Scholar 

  • Tsarkov D, Horrocks I (2006) FaCT++ description logic reasoner: System description. In: Furbach U, Shankar N (eds), Proceedings of the 3rd International Joint Conference on Automated Reasoning (IJCAR ’06), Seattle, WA, August 17–20, 2006. Lecture Notes in Computer Science 4130:292–297

  • van Driel MA, Bruggeman J, Vriend G, Brunner HG, Leunissen JAM (2006) A text-mining analysis of the human phenome. Eur J Hum Genet 14(5):535–542

    PubMed  Article  Google Scholar 

  • Wallace HA, Marques-Kranc F, Richardson M, Luna-Crespo F, Sharpe JA, Hughes J, Wood WG, Higgs DR, Smith AJ (2007) Manipulating the mouse genome to engineer precise functional syntenic replacements with human sequence. Cell 128(1):197–209

    PubMed  Article  CAS  Google Scholar 

  • Washington NL, Haendel MA, Mungall CJ, Ashburner M, Westerfield M, Lewis SE (2009) Linking human diseases to animal models using ontology-based phenotype annotation. PLoS Biol 7(11):e1000247

    PubMed  Article  Google Scholar 

  • Weinreich SS, Mangon R, Sikkens JJ, Teeuw ME, Cornel MC (2008) Orphanet: a European database for rare diseases. Ned Tijdschr Geneeskd 9(152):518–519

    Google Scholar 

  • Wolstencroft K, Lord P, Tabernero L, Brass A, Stevens R (2006) Protein classification using ontology classification. Bioinformatics 22(14):e530–e538

    PubMed  Article  CAS  Google Scholar 

  • Xu T, Du LF, Zhou Y (2008) Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data. BMC Bioinform 9(1):472

    Article  Google Scholar 

  • Yamazaki Y, Jaiswal P (2005) Biological ontologies in rice databases. An introduction to the activities in Gramene and Oryzabase. Plant Cell Physiol 46(1):63–68

    PubMed  Article  CAS  Google Scholar 

  • Zheng-Bradley X, Rung J, Parkinson H, Brazma A (2010) Large scale comparison of global gene expression patterns in human and mouse. Genome Biol 11(12):R124

    PubMed  Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgios V. Gkoutos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gkoutos, G.V., Schofield, P.N. & Hoehndorf, R. Computational tools for comparative phenomics: the role and promise of ontologies. Mamm Genome 23, 669–679 (2012). https://doi.org/10.1007/s00335-012-9404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00335-012-9404-4

Keywords

  • Automate Reasoning
  • Phenotype Information
  • Biomedical Ontology
  • Phenotype Ontology
  • International Mouse Phenotyping Consortium